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Abstract Generalized cyclotomic sequences of period pq have several desir-
able randomness properties if the two primes p and q are chosen properly. In
particular, Ding deduced the exact formulas for the autocorrelation and the
linear complexity of these sequences of order 2. In this paper, we consider the
generalized sequences of order 4. Under certain conditions, the linear complex-
ity of these sequences of order 4 is developed over a finite field Fl. Results show
that in many cases they have high linear complexity.
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1 Introduction

Let l be a prime number and Fl denote a finite field with l elements. A sequence
s = s0s1 . . . sn−1 . . . is called to be n-periodic if si = si+n for all i ≥ 0. Periodic
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sequences with certain properties are widely used in software testing, radar
systems, stream ciphers and so on. For cryptography applications, the linear
complexity is an important factor. It is defined to be the length of the shortest
linear feedback shift register which generates this sequence. The generalized
cyclotomic sequences have been described and studied for the past decades and
have resulted in numerous constructions [1,2,4,5,8,9,11]. These are interesting
since they have a number of attractive randomness properties [6,14,16,15,17].

Let p and q be two distinct odd primes with gcd(p− 1, q − 1) = d. Define
n = pq and e = (p− 1)(q − 1)/d. The Chinese Reminder Theorem guarantees
that there exists a common primitive root g of both p and q. Let x be an
integer satisfying

x ≡ g (mod p), x ≡ 1 (mod q). (1.1)

Whiteman proved that [18]

Z
∗

n = {gsxi : s = 0, 1, · · · , e− 1; i = 0, 1, · · · d− 1},

where Z∗

n denotes the set of all invertible elements of the residue class ring Zn.
The generalized cyclotomic classes Di (0 ≤ i ≤ d − 1) of order d with

respect to n are defined by [18]

Di = {gsxi : s = 0, 1, . . . , e− 1}, (0 ≤ i ≤ d− 1), (1.2)

where the multiplication is that of Zn. Clearly, the cosets Di depend on the
choice of the common primitive root g if d ≥ 3. It is not hard to prove that
[18]

Z
∗

n =

d−1
⋃

i=0

Di, Di ∩Dj = ∅, (i 6= j),

where ∅ denotes the empty set. Define

P = {p, 2p, . . . , (q − 1)p} = pZ∗

q , Q = {q, 2q, . . . , (p− 1)q} = qZ∗

p.

Then {0}, P , Q and Di (0 ≤ i ≤ d − 1) is a partition of Zn. Let S be an
nonempty subset of {0, 1, · · · , d− 1} and

ΣS =
⋃

i∈S

Di.

We define the following binary sequence s = s0s1s2 . . . sn−1 . . . of period n
by

si =







1, if i mod n ∈ ∪P ∪ΣS ,
ρ, if i mod n ∈ {0},
0, otherwise,

where i ≥ 0 and ρ ∈ {0, 1}. For ρ = 0 and S = {0}, the linear complexity
of these sequences over F2 have been calculated by Ding [4] with d = 2 and
Hu et al. [11]with d = 4. Furthermore, for S = {0, 2, · · · , d − 2} and ρ = 0,
Ding [6] determined the linear complexity of the two-prime sequences over
finite field Flm where gcd(l, n) = 1, and used these sequences to construct
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several classes of cyclic codes over a finite field with optimal or almost optimal
property. In this paper, we only consider the case ρ = 1, d = 4 and S = {0, 1}.
Under the assumption that n−1

4 ≡ 0 (mod l) or l /∈ D0, we calculate the
linear complexity of these sequences over the finite field Fl. Results show that
in many cases these sequences have high linear complexity.

This paper is organized as follows. Section 2 presents basic notations and
results of periodic sequences and the generalized cyclotomy [18]. In section 3,
we give an expression for the linear complexity of the generalized cyclotomic
sequences over Fl. In the last section, we present concluding remarks of this
paper.

2 Preliminaries

Firstly, we give the definition and formula of linear complexity of periodic
sequences over a finite field. See [3] or [13] for more details.

Let l be a prime number and let s = s0s1 · · · sn−1 · · · be a periodic sequence
over Fl with period n, where si ∈ Fl for i ≥ 0. The sequence s can be viewed
as a power series

s∞(x) =
∞
∑

i=0

six
i =

s(x)

1− xn
, s(x) = s0+s1x+s2x

2+· · ·+sn−1x
n−1 ∈ Fl[x]

in the power series ring Fl[[x]] .
Let h(x) = gcd(s(x), 1 − xn) , then

s∞(x) =
w(x)

v(x)
, v(x) =

1− xn

h(x)
w(x) =

s(x)

h(x)

where w(x), v(x), h(x) ∈ Fl[x].

Definition 1 The polynomial v(x) is called the minimal polynomial of the
periodic sequence s over Fl. The deg v(x) = n − deg h(x) is called the linear
complexity of the sequence s over Fl, which is denoted by Ll(s).

Indeed Ll(s) is the length of the shortest linear feedback shift register which
generates the sequence s.

If gcd(n, l) = 1, then 1− xn has n distinct zeros ζin (0 ≤ i ≤ n− 1) in the
algebraic closure Ωl of Fl. It is easy to see that

Ll(s) = n−#{i : 0 ≤ i ≤ n− 1, s(ζin) = 0}. (2.1)

In order to determine the linear complexity of generalized cyclotomic se-
quences, we introduce generalized cyclotomy.

Let the symbols be as in the introduction and d = gcd(p − 1, q − 1) = 4.
The generalized cyclotomic numbers of order 4 with respect to n is defined by

(i, j) = |(Di + 1) ∩Dj |

for 0 ≤ i, j ≤ 3.
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By a well-known theorem ([12], P. 128), there are exactly two representa-
tions of n in the form n = a2 + 4b2 with a ≡ 1 (mod 4) and the sign of b
indeterminate.

Let g1 and g2 be a fixed primitive root of p and q, respectively. For i = 1, 2,
let xi, yi be integers given uniquely by

p = x2
1 + 4y21 , q = x2

2 + 4y22 , x1 ≡ x2 ≡ 1 (mod 4),

2y1 ≡ −(−g1)
p−1
4 x1 (mod p), 2y2 ≡ −(−g2)

q−1
4 x2 (mod q). (2.2)

Define a, b to be integers satisfying

a = x1x2 + 4

(

2

p

)(

2

q

)

y1y2, b = x1y2 −

(

2

p

)(

2

q

)

x2y1, (2.3)

where
(

·

·

)

denotes the Legendre symbol.

It is clear that a ≡ 1 (mod 4) and n = a2 + 4b2 is one of the two repre-
sentations of n. The following lemma shows that the generalized cyclotomic
numbers of order 4 with respect to n depend uniquely on this representation.

Table 1: p 6≡ q (mod 8)

(i, j) 0 1 2 3
0 A B C D
1 E E D B
2 A E A E
3 E D B E

Table 2: p ≡ q (mod 8)

(i, j) 0 1 2 3
0 A B C D
1 B D E E
2 C E C E
3 D E E B

Lemma 2 ([9], Theorem IV.1.) Let p ≡ q ≡ 1 (mod 4) be two distinct

primes with the fixed primitive roots g1 and g2, respectively. M = (p−2)(q−2)−1
4 ,

and a, b are the integers defined in (2.3).

If p 6≡ q (mod 8), then in Table 1 8A = −a + 2M + 3, 8B = −a − 4b +
2M − 1, 8C = 3a+ 2M − 1, 8D = −a+ 4b+ 2M − 1, 8E = a+ 2M + 1.

If p ≡ q (mod 8), then in Table 2 8A = 3a+2M+5, 8B = −a+4b+2M+1,
8C = −a+ 2M + 1, 8D = −a− 4b+ 2M + 1, 8E = a+ 2M − 1.
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3 Generalized cyclotomic sequences of order 4

Throughout this section, let p and q be two distinct odd primes with gcd(p−
1, q − 1) = 4. Define n = pq and e = (p − 1)(q − 1)/4. Let l be a prime and
satisfy gcd(l, n) = 1.

The generalized cyclotomic sequence s of order 4 of period n is defined by

si =

{

1, if i mod n ∈ {0} ∪ P ∪D0 ∪D1,
0, otherwise,

(3.1)

where D0, D1 are defined by (1.2) and P = pZ∗

q . Here in this paper, we treat
it as a sequence over a finite field Fl, where gcd(l, n) = 1.

Denote ordn(l) the multiplicative order of l modulo n. Let ζn be an n-th
primitive root of unity over Flordn(l) . For the sequence s defined by (3.1), we
know

s(x) = 1 +
∑

i∈P

xi +
∑

i∈D0

xi +
∑

i∈D1

xi,

and

s(1) = 1 +
(p+ 1)(q − 1)

2
mod l. (3.2)

Define δ as follows

δ =

{

1, if l | 1 + (p+1)(q−1)
2 ,

0, otherwise.
(3.3)

Note that the generalized cyclotomic classes of order 2 are given by

C0 = D0 ∪D2, C1 = D1 ∪D3.

Define η0 =
∑

i∈C0
ζin. The following lemma has been proven in [6].

Lemma 3 ([6], Lemma 3.13) If n ≡ 1 (mod 4), then we have

η0(1− η0) = −
n− 1

4
.

Hence, η0 ∈ {0, 1} if and only if (n− 1)/4 ≡ 0 (mod l).
To compute the linear complexity of s, we need to compute gcd(xn −

1, s(x)). For this purpose, we require a number of auxiliary results.

Lemma 4 ([4], Lemma 5) Let m be the least common multiple of two pos-
itive integers m1 and m2. The system of congruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2) (3.4)

has solutions if and only if

gcd(m1,m2)|a1 − a2, (3.5)

where a|b means that a divides b. When the condition (3.5) holds, the system
of the congruences of (3.4) has only one solution modulo m.

Lemma 5 For a ∈ Dj, then aDi = Di+j mod 4.
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Proof To prove this lemma, we need to prove x4 ∈ D0 for the integer x defined
by (1.1).

By the generalized Chinese Reminder Theorem, there exists an integer s
with 0 ≤ s ≤ e− 1 such that

{

s ≡ 4 (mod p− 1),
s ≡ 0 (mod q − 1).

That is, the integer s satisfies
{

x4 ≡ gs (mod p),
x4 ≡ gs (mod q).

This s is unique. Hence, x4 ≡ gs (mod pq) and x4 ∈ D0.

Since ζn is an n-th primitive root of unity over Flordn(l) , we have
∑

i∈P

ζin = −1,
∑

i∈Q

ζin = −1. (3.6)

By the definition of ζn, we have

ζnn − 1 = (ζn − 1)



1 +
∑

i∈P

ζin +
∑

i∈Q

ζin +

3
∑

j=0

∑

i∈Dj

ζin





= 0.

Together with (3.6), we get

3
∑

j=0

∑

i∈Dj

ζin = 1. (3.7)

Define t(x) =
∑

i∈D1
xi +

∑

i∈D2
xi.

Lemma 6 Let the symbols be the same as before. Then

s(ζan) =































s(ζn), a ∈ D0,
t(ζn), a ∈ D1,
− (s(ζn)− 1) , a ∈ D2,
− (t(ζn)− 1) , a ∈ D3,

− p−1
2 , a ∈ P,

q+1
2 , a ∈ Q.

Proof By Lemma 5, aD0 = D0 and aD1 = D1 if a ∈ D0. If a ∈ D0, then
aP = P since gcd(a, q) = 1. Hence, we obtain

s(ζan) = 1 +
∑

i∈P

ζain +
∑

i∈D0∪D1

ζain

= 1 +
∑

i∈P

ζin +
∑

i∈D0∪D1

ζin

= s(ζn).
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If a ∈ D1, by Lemma 5, aD0 = D1 and aD1 = D2. By (3.6), we have

s(ζan) = 1 +
∑

i∈P

ζain +
∑

i∈D0∪D1

ζain

=
∑

i∈D1

ζin +
∑

D2

ζin

= t(ζn).

If a ∈ D2, by Lemma 5, aD0 = D2 and aD1 = D3. By (3.6) and (3.7), we
get

s(ζan) = 1 +
∑

i∈P

ζain +
∑

i∈D0∪D1

ζain

=
∑

i∈D2

ζin +
∑

i∈D3

ζin

= 1−
∑

i∈D0∪D1

ζin

= 1− s(ζn).

If a ∈ D3, by Lemma 5, aD0 = D3 and aD1 = D0. By (3.7), we have

s(ζan) = 1 +
∑

i∈P

ζain +
∑

i∈D0∪D1

ζain

=
∑

i∈D3

ζin +
∑

D0

ζin

= 1− t(ζn).

If a ∈ P , then aP = P . Then by (3.6), we know

s(ζan) = 1 +
∑

i∈P

ζain +
∑

i∈D0∪D1

ζain

=
∑

i∈D0∪D1

ζain .

When s ranges over {0, 1, . . . , e− 1}, (D0 ∪D1) mod q takes on each element
of {1, 2, . . . , q − 1} exactly (p− 1)/2 times. It follows from (3.6) that

∑

i∈D0∪D1

ζain =

(

p− 1

2
mod l

)

∑

i∈P

ζin

= −
p− 1

2
mod l.

If a ∈ Q, then aP = {0}. Then

s(ζan) = 1 +
∑

i∈P

ζain +
∑

i∈D0∪D1

ζain

= 1 + (q − 1) +
∑

i∈D0∪D1

ζain .
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When s ranges over {0, 1, . . . , e − 1}, (D0 ∪D1) modp takes on each element
of {1, 2, . . . , p− 1} exactly (q − 1)/2 times. It follows from (3.6) that

s(ζan) = 1 + (q − 1) +
∑

i∈D0∪D1

ζain

= 1 + (q − 1) +
q − 1

2

∑

i∈Q

ζin

=
q + 1

2
mod l.

Lemma 7 ( [11], Lemma 3.3) Let the notations be the same as before. Then

1. −1 ∈ D0 if and only if p 6≡ q (mod 8);
2. −1 ∈ D2 if and only if p ≡ q (mod 8).

Lemma 8 ([18], Lemmas 2 and 4) For each w ∈ P ∪Q,

|{Di ∩ (Dj + w)}| =











(p−1)(q−1)
16 if i 6= j,

(p−1)(q−5)
16 if i = j and p | w,

(p−5)(q−1)
16 if i = j and q | w.

Define

∆1 =
p− 1

2
mod l, ∆2 =

q + 1

2
mod l.

Theorem 9 Let n−1
4 ≡ 0 (mod l). Then the linear complexity of the sequence

s defined by (3.1) is given as follows:

1. when p ≡ q (mod 8) and b
2 ≡ 0 (mod l), we have

Ll(s) =















pq+p+q−1
2 − δ, if ∆1 6= 0, ∆2 6= 0,

pq−p+q+1
2 − δ, if ∆1 6= 0, ∆2 = 0,

pq+p−q+1
2 − δ, if ∆1 = 0, ∆2 6= 0,

pq−p−q+1
2 , if ∆1 = 0, ∆2 = 0;

2. when q 6≡ p (mod 8) and a2+3
4 ≡ 0 (mod l), we have

Ll(s) =















3pq+p+q−1
4 − δ, if ∆1 6= 0, ∆2 6= 0,

3pq−3p+q+3
4 − δ, if ∆1 6= 0, ∆2 = 0,

3pq+p−3q+3
4 − δ, if ∆1 = 0, ∆2 6= 0,

3pq−3p−3q+5
4 , if ∆1 = 0, ∆2 = 0;

3. when p ≡ q (mod 8) and b
2 6≡ 0 (mod l) or q 6≡ p (mod 8) and a2+3

4 6≡ 0
(mod l), we have

Ll(s) =















n− δ, if ∆1 6= 0, ∆2 6= 0,
n+ 1− p− δ, if ∆1 6= 0, ∆2 = 0,
n+ 1− q − δ, if ∆1 = 0, ∆2 6= 0,
n+ 2− p− q, if ∆1 = 0, ∆2 = 0,
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where a, b are the integers defined in (2.3) and δ is defined in (3.3).

Proof By definition, we have

s(ζn)
2 =





∑

i∈D0,j∈D0

+
∑

i∈D0,j∈D0

+
∑

i∈D0,j∈D0

+
∑

i∈D0,j∈D0



 ζi+j
n .

We first prove prove the conclusions for the case that q ≡ p (mod 8). In
this case, by Lemma 7, −1 ∈ D0 and b must be even. By Lemmas 2 and 8 ,
we have

s(ζn)
2 =

(

∑

i∈D0,j∈D0
+
∑

i∈D0,j∈D1
+
∑

i∈D1,j∈D0
+
∑

i∈D1,j∈D1

)

ζi−j
n

= ((0, 0) + (3, 3) + (0, 1) + (3, 0))
∑

i∈D0
ζin

+((01, 0) + (0, 3) + (1, 1) + (0, 0))
∑

i∈D1
ζin

+((2, 0) + (1, 3) + (2, 1) + (1, 0))
∑

i∈D2
ζin

+(3, 0) + (2, 3) + (3, 1) + (2, 0))
∑

i∈D3
ζin

+2
(

(p−1)(q−1)
16

∑

i∈P ζin

)

+ 2
(

(p−1)(q−1)
16

∑

i∈P ζin

)

+2
(

(p−1)(q−5)
16

∑

i∈P ζin

)

+ 2
(

(p−5)(q−1)
16

∑

i∈Q ζin

)

+ |D0|+ |D1|

= s(ζn) + b
∑

i∈D0∪D2
ζin − b

2 +M + p+q−2
2 .

From n−1
4 ≡ 0 (mod l), we know M + p+q−2

2 ≡ 0 (mod l). Hence,

s(ζn)
2 = s(ζn) + b

∑

i∈D0∪D2

ζin −
b

2
.

Whence,

s(ζn)(s(ζn)− 1) =
b

2

(

2
∑

i∈D0∪D2

ζin − 1

)

. (3.8)

Note that n−1
4 ≡ 0 (mod l). By Lemma 3, we have

∑

i∈D0∪D2
ζin ∈ {1, 0}. It

follows that

2
∑

i∈D0∪D2

ζin − 1 ∈ {1,−1}. (3.9)

Similarly, we have

t(ζn)(t(ζn)− 1) = −
b

2

(

2
∑

i∈D0∪D2

ζin − 1

)

. (3.10)

By Lemma 6, (3.8) and (3.10), we know when b
2 ≡ 0 (mod l), there are

exactly half of a′s with a ∈ Z
∗

n such that s(ζan) = 0. When b
2 6≡ 0 (mod l),

s(ζan) 6= 0 for all a ∈ Z
∗

n. Then the desirable results on the linear complexity
of the sequence s follow from (2.1), (3.2) and Lemma 6.
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Now, we prove the conclusions for the case that q 6≡ p (mod 8). In this
case, by Lemma 7, −1 ∈ D2. It follows from Lemmas 2 and 8 that

s(ζn)
2 =

(

∑

i∈D0,j∈D2
+
∑

i∈D0,j∈D3
+
∑

i∈D1,j∈D2
+
∑

i∈D1,j∈D3

)

ζi−j
n

= ((2, 2) + (1, 1) + (2, 3) + (1, 2))
∑

i∈D0
ζin

+((3, 2) + (2, 1) + (3, 3) + (2, 2))
∑

i∈D1
ζin

+((0, 2) + (3, 1) + (0, 3) + (3, 2))
∑

i∈D1
ζin

+((1, 2) + (0, 1) + (1, 3) + (0, 2))
∑

i∈D1
ζin

+4
(

(p−1)(q−1)
16

∑

i∈P ζin

)

+ 4
(

(p−1)(q−1)
16

∑

i∈Q ζin

)

= s(ζn) +
b(2

∑
i∈D0∪D2

ζi
n−1)−1

2 +M − (p−1)(q−1)
2 .

From n−1
4 ≡ 0 (mod l), we have M − (p−1)(q−1)

2 ≡ 0 (mod l). Hence,

s(ζn)
2 = s(ζn) +

b
(

2
∑

i∈D0∪D2
ζin − 1

)

− 1

2
.

Whence,

s(ζn)(s(ζn)− 1) =
b
(

2
∑

i∈D0∪D2
ζin − 1

)

− 1

2
. (3.11)

Similarly, we get

t(ζn)(t(ζn)− 1) = −
b
(

2
∑

i∈D0∪D2
ζin − 1

)

+ 1

2
. (3.12)

Since gcd(p− 1, q− 1) = 4 and p ≡ q+4 (mod 8), we get p ≡ 1 or 5 (mod 8).
Hence, n = pq ≡ 5 (mod 8). Together with (n − 1)/4 ≡ 0 (mod l), we get l
is an old prime. By the representation n = a2 + 4b2 with a ≡ 1 (mod 4), we
have

n− 1

4
=

a2 + 3

4
+ (|b| − 1)(|b|+ 1).

Therefore, a2+3
4 ≡ 0 (mod l) if and only if (|b| − 1)(|b| + 1) ≡ 0 (mod l).

Since l is odd, we obtain (|b| − 1)(|b|+ 1) ≡ 0 (mod l) if and only if l divides

one of |b| − 1 and |b|+1. By Lemma 6, if a2+3
4 ≡ 0 (mod l), there are exactly

(p−1)(q−1)/4 a’s such that s(ζan) = 0 for a ∈ Z
∗

n. If
a2+3

4 6≡ 0 (mod l), s(ζan) 6=
0 for all a ∈ Z

∗

n. Then the desirable conclusions on the linear complexity of
the sequence s follow from (2.1), (3.2), (3.9) and Lemma 6.

Remark 10 If n−1
4 ≡ 0 (mod l), by Lemma 3.14 in [6], we get l ∈ D0. For

the case l /∈ D0, the linear complexity of the sequence s defined by (3.1) can
also be determined in the following theorem.

Theorem 11 If l /∈ D0, then for the sequence s defined in (3.1), we have

Ll(s) =















n− δ, if ∆1 6= 0, ∆2 6= 0,
n+ 1− p− δ, if ∆1 6= 0, ∆2 = 0,
n+ 1− q − δ, if ∆1 = 0, ∆2 6= 0,
n+ 2− p− q, if ∆1 = 0, ∆2 = 0,
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Proof If l /∈ D0, then there exists i ∈ {1, 2, 3} such that i ∈ Di. No matter
what i is, there exists j ∈ {1, 2, 3} satisfying the congruence equation ij ≡ 2
(mod 4). Then lj ∈ D2 and

sl
j

(ζn) = s(ζl
j

n ) = 1− s(ζn).

This implies s(ζn) /∈ {0, 1}.

Similarly, tl
j

(ζn) = t(ζl
j

n ) = 1 − t(ζn) and t(ζn) /∈ {0, 1}. Hence, s(ζn) 6= 0
for all a ∈ Z

∗

n. Combining (2.1) and Lemma 6, we have the desirable results.

Define

dj(x) =
∏

i∈Dj

(x− ζin)

for j ∈ {0, 1, 2, 3}. If l ∈ D0, it is easily proved that dj(x) ∈ GF(lm)[x] for all
j.

Let d(x) =
∏3

j=0 dj(x), then d(x) ∈ GF(lm)[x]. We have then

xn − 1 =

n−1
∏

i=0

(x− ζin) =
(xq − 1)(xp − 1)d(x)

x− 1
.

Lemma 12 ([11], Lemma 3.3) Let notations be the same as before. Then

1. 2 ∈ D0 ∪D2 if and only if p ≡ q (mod 8);
2. 2 ∈ D1 ∪D3 if and only if p 6≡ q (mod 8).

Lemma 13 ([11], Lemma 3.5) Let p ≡ q (mod 8). Then there are exactly
two representations over Z

pq = a2 + 4b2 = a′2 + 4b′2, a ≡ a
′

≡ 1 (mod 4),

where one of b and b
′

is divided by 4 and another is exactly divided by 2.

Lemma 14 ([11], Corollary 3.9) Let p ≡ q (mod 8). Fix a common prim-
itive root g of p and q. Then 2 ∈ D0 if and only if the generalized cyclotomic
numbers in Lemma 2 depend on the decomposition n = a2 + 4b2 with 4|b;
2 ∈ D2, if and only if the generalized cyclotomic numbers depend on the de-
composition n = a2 + 4b2 with 2||b.

After the preparations above, we are ready to compute the linear complex-
ity and minimal polynomials of the sequence defined in (3.1) over F2.

Corollary 15 Let l = 2 and n ≡ 1 (mod 8). Then p ≡ q (mod 8) and the
linear complexity and minimal polynomials of the sequence s defined by (3.1)
are given as follows:
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1. when 2 ∈ D0, then

L2(s) =
pq − q + p+ 1

2
,

m(x) =























(xn
−1)(x−1)

(xq−1)d2(x)d1(x)
, if s(ζn) = 1 and t(ζn) = 0,

(xn
−1)(x−1)

(xq−1)d0(x)d3(x)
, if s(ζn) = 0 and t(ζn) = 1,

(xn
−1)(x−1)

(xq−1)d0(x)d1(x)
, if s(ζn) = 0 and t(ζn) = 0,

(xn
−1)(x−1)

(xq−1)d2(x)d3(x)
, if s(ζn) = 1 and t(ζn) = 1;

2. when 2 ∈ D2 , then

L2(s) = n+ 1− q, m(x) =
(xn − 1)(x− 1)

xq − 1
.

Proof If p 6≡ q (mod 8), then p ≡ q + 4 (mod 8) and n = pq ≡ 5 (mod 8).
This contradicts with n ≡ 1 (mod 8). Hence, p ≡ q (mod 8). And in this case,
by Lemma 12, 2 ∈ D0 ∪D2.

By (3.8), (3.10) and Lemma 14, if 2 ∈ D0, then

s(ζn) ∈ {0, 1}, t(ζn) ∈ {0, 1},

and if 2 ∈ D2, we obtain

s(ζn) /∈ {0, 1} t(ζn) /∈ {0, 1}.

Then the desired conclusions on the linear complexity and the minimal poly-
nomial of the sequence s∞ follow from (2.1) and Lemma 6.

If p 6≡ q (mod 8), then n = pq ≡ 5 (mod 8) and by Lemma 2 ∈ D1 ∪D3.
Hence, by Theorem 11, we have the following corollary.

Corollary 16 Let l = 2 and n ≡ 5 (mod 8). Then for the sequence s defined
by (3.1), we have

L2(s) = n+ 1− q, m(x) =
(xn − 1)(x− 1)

xq − 1
.

Example 17 Let (p, q) = (5, 13) and (g1, g2) = (2, 2). Then a = 1 and b = 4.
If l = 2, Magma program shows that 2 ∈ D0 and L2(s) = 29. If l = 3, then
b/2 6≡ 0 mod l and L3(s) = 65.

Example 18 Let (p, q) = (5, 17) and (g1, g2) = (2, 3). Then a = −7 and
b = 3. If l = 2, it can be easily checked that 2 ∈ D3 and L2(s) = 69. If l = 7,
then (a2 + 3)/4 6≡ 0 mod l and L7(s) = 85.
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4 Concluding Remarks

In this paper, we determined the linear complexity of generalized cyclotomic
sequences of order 4 over Fl under certain conditions. Results show that these
sequences have high linear complexity for a large part of prime numbers p and
q. Recently, periodic sequences were used to construct cyclic codes and the
dimension of the cyclic code is closely related to the linear complexity of the
corresponding sequence over a finite field [6,7]. This paper could be viewed as
an application of this idea.
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