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The homology groups of a manifold are important topological invariants that provide an algebraic
summary of the manifold. These groups contain rich topological information, for instance, about
the connected components, holes, tunnels and sometimes the dimension of the manifold. In earlier
work [1], we have considered the statistical problem of estimating the homology of a manifold
from noiseless samples and from noisy samples under several different noise models. We derived
upper and lower bounds on the minimax risk for this problem. In this note we revisit the noiseless
case. In [1], we used Le Cam’s lemma to establish the lower bound 1

Rn = Ω
(
exp

(
−nτd

))

for d ≥ 1 and D > d. In the noiseless case the upper bound follows from the work of [2], who
show that

Rn = O

(
1

τd
exp

(
−nτd

))
.

In this note we use a different construction based on the direct analysis of the likelihood ratio
test to show that

Rn = Ω

(
1

τd
exp

(
−nτd

))
,

as n → ∞ thus establishing rate optimal asymptotic minimax bounds for the problem. The
techniques we use here extend in a straightforward way to the noisy settings considered in [1].
Although, we do not consider the extension here non-asymptotic bounds are also straightforward.

1. Introduction. Let M be a d-dimensional manifold embedded in R
D where d ≤ D. The

homology groups H(M) of M (see [3]), are an algebraic summary of the properties of M .
The homology groups of a manifold describe its topological features such as its connected
components, holes, tunnels, etc.

In this note we study the problem of estimating the homology of a manifoldM from a sample
X = {X1, . . . , Xn}. Specifically, we bound the minimax risk

(1) Rn ≡ inf
Ĥ

sup
Q∈Q

Qn
(
Ĥ 6= H(M)

)

where the infimum is over all estimators Ĥ of the homology of M and the supremum is over
appropriately defined classes of distributions Q for Y . Note that 0 ≤ Rn ≤ 1 with Rn = 1

1The asymptotic notation in both the upper and lower bounds hide constants that could depend on the
dimensions d and D.
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meaning that the problem is hopeless. Bounding the minimax risk is equivalent to bounding
the sample complexity of the best possible estimator, defined by n(ǫ) = min

{
n : Rn ≤ ǫ

}

where 0 < ǫ < 1.

We assume that the sample X ⊂ R
D constitutes a set of observations of an unknown d-

dimensional manifold M , with d < D, whose homology we seek to estimate. The distribution
of the sample depends on the properties of the manifold M as well as on the distribution of
points on M . We consider the collection

P ≡ P(M) ≡ P(M, a)

of all probability distributions supported over manifolds M in M having densities p with
respect to the volume form on M uniformly bounded from below by a constant a > 0, i.e.
0 < a ≤ p(x) < ∞ for all x ∈ M .

Manifold Assumptions. We assume that the unknown manifold M is a d-dimensional
smooth compact Riemannian manifold without boundary embedded in the compact set X =
[0, 1]D. We further assume that the volume of the manifold is bounded from above by a
constant which can depend on the dimensions d,D, i.e. we assume vol(M) ≤ CD,d. We will
also make the further assumption that D > d. The main regularity condition we impose on
M is that its condition number be not too large. The condition number κ(M) (see [2]) is
1/τ , where τ is the largest number such that the open normal bundle about M of radius r
is imbedded in R

D for every r < τ . For τ > 0 let

M ≡ M(τ) =
{
M : κ(M) ≥ τ

}

denote the set of all such manifolds with condition number no smaller than τ . A manifold
with small condition number does not come too close to being self-intersecting.

1.1. Lower bounding the minimax risk. In this note we will lower bound the minimax risk
by considering a related testing problem.

Before describing the hypotheses we describe the null and alternate manifolds. The null
manifold M0 is a collection of m, d-spheres of radius τ , denoted S1, . . . , Sm, with centers on
one face of the unit hypercube in d+1 dimensions (M0 is embedded in a space of dimension
D which is of dimension at least d + 1), with spacing between adjacent centers = 4τ . It is
easy to see that

m = O

(
1

(4τ)d

)

because the manifold must be completely in [0, 1]D, and that the manifold has condition
number at least 1/τ . We will use

m = Θ

(
1

(4τ)d

)

in this note. Let P0 denote the uniform distribution on M0.
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The alternate manifolds are a collection {M1i : i ∈ {1, . . . , m}}, where M1i is M0 with Si

removed. Let π denote the uniform distribution on {1, . . . , m}, and P1i denote the uniform
distribution on M1i.

We need to ensure that the density p is lower bounded by a constant. Note that the total
d-dimensional volume of M0 is vdτ

dm, and so

p(x) ≥
1

vdτdm

where vd is the volume of the d-dimensional unit ball. This is Ω(1) as desired. A similar
argument works for M1i.

Consider the following testing problem:

H0 : X ∼ P0

H1 : X ∼ P1i with i ∼ π

A test T , is a measurable function of X, in particular T : X → {0, 1}, and its risk is defined
as

RT
n

..= PH0
(T (X) = 1) + PH1

(T (X) = 0)

The relationship between testing and estimation is standard [4]. In our case it is easy to see
that the estimation minimax risk of Equation 1 satisfies,

RT
n ≤ 2Rn

and so it suffices to lower bound RT
n to obtain a lower bound on Rn. This relation is a

straightforward consequence of the fact that H(M0) 6= H(M1i) for every i (since they have
different number of connected components), and so any estimator can be used in the testing
problem described.

The optimal test for the hypothesis testing problem described is the likelihood ratio test,

T (X) = 0 if and only if L(X) ≤ 1

where

L(X) =
L1(X)

L0(X)

where L1(X) and L0(X) are likelihoods of the data under the alternate and null respectively.

1.2. Coupon collector lower bound. We begin with a theorem from [5].

Lemma 1 (Theorem 3.8 of [5]). Let the random variable X denote the number of trials for

collecting each of the n types of coupons. Then for any constant c ∈ R, and m = n logn−cn,

lim
n→∞

P(X > m) = 1− exp (− exp (c))
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2. Main result.

Theorem 2. For any constant δ < 1, we have

Rn ≥ Ω

(
min

(
1

τd
exp

(
−nτd

)
, δ

))

as n → ∞.

Proof. Notice that since

m = Θ

(
1

(4τ)d

)

the theorem is implied by the statement that

n = m logm+m log

(
1

δ

)
=⇒ Rn ≥ cδ

for some constant c. We will focus on proving this claim.

Let us consider the case when samples are drawn according to P0. From Lemma 1 we have
that if

n = m logm+m log

(
1

δ

)

then the probability with which we do not see a point in each of the m spheres is

1− exp(− exp(− log 1/δ)) ≥ cδ

since δ < 1, for some constant c. It is easy to see that if we do not see a point in each of the
m spheres then

L(X) ≥
1

m

1

(1− 1/m)n
..= Tm,n

When n = m logm+m log
(
1
δ

)
,

Tm,n →
1

δ
> 1

so asymptotically the likelihood ratio test always rejects the null.

From this we can see the probability of a Type I error → cδ, and RT
n ≥ cδ, which gives

Rn ≥
c

2
δ

as desired.
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3. Discussion. In this note we have established tight minimax rates for the problem of
homology inference in the noiseless case. The intuition behind the construction extends to
the noisy cases considered in [1] in a straightforward way.

Although the bound we have shown is an asymptotic lower bound, a finite sample lower
bound follows in a straightforward way by replacing the asymptotic calculation in Lemma 1
with finite sample estimates.

We also expect similar constructions to be useful in establishing tight lower bounds for
the problems of manifold estimation in Hausdorff distance considered in [6, 7], and for the
problem of estimation of persistence diagrams in bottleneck distance considered in [8].
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