
The square root rank of the correlation polytope is
exponential

Troy Lee∗ Zhaohui Wei∗

Abstract

The square root rank of a nonnegative matrix A is the minimum rank of a matrix B such
that A = B ◦B, where ◦ denotes entrywise product. We show that the square root rank of the
slack matrix of the correlation polytope is exponential. Our main technique is a way to lower
bound the rank of certain matrices under arbitrary sign changes of the entries using properties
of the roots of polynomials in number fields. The square root rank is an upper bound on the
positive semidefinite rank of a matrix, and corresponds the special case where all matrices in
the factorization are rank-one.

1 Introduction
The square root rank of a nonnegative matrix A is the minimum rank of a matrix B such that
A = B ◦ B, where ◦ denotes the entrywise product. The freedom of the matrix B is to multiply
each entry

√
A(i, j) by ±1 in an effort to decrease the rank, and this substantial freedom is what

makes showing lower bounds on the square root rank difficult. It is known that the problem of
verifying if the square root rank is less than a given value is NP-hard [FGP+14].

The motivation for studying square root rank is that it is an upper bound on the positive semidef-
inite rank [GPT13, Zha12]. A positive semidefinite (PSD) factorization of an m-by-n nonneg-
ative matrix A of size r is given by r-by-r real PSD matrices E1, . . . , Em, F1, . . . , Fn such that
A(i, j) = Tr(EiFj). The square root rank exactly corresponds to the minimum size of a PSD
factorization where all the PSD matrices are rank-one.

The positive semidefinite rank has been defined relatively recently in the context of combina-
torial optimization. Many combinatorial optimization problems can be represented as optimizing a
linear function over a polytope P formed by the convex hull of feasible solutions. A natural way to
approach this problem is via linear programming and here the number of constraints in the linear
program is given by the number of facets of P .

A remarkable fact is that sometimes there is a higher dimensional polytope Q with fewer facets
that projects to P . In this way, the original optimization problem can be transferred to an easier
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optimization problem over Q. The polytope Q is called a linear extension of P and the minimum
number of facets of such a Q is the linear extension complexity of P .

A classic paper of Yannakakis beautifully characterizes the linear extension complexity [Yan91].
For a polytope P with facet inequalities aix ≤ bi and vertex set V = {vj}, the slack matrix of P
is the matrix with the (i, j) entry equal to bi − aivj . Yannakakis showed that the linear extension
complexity of P is equal to the nonnegative rank of the slack matrix of P . The nonnegative rank
of a nonnegative matrix A is the minimum number of nonnegative rank-one matrices that sum to
A. Answering a long standing open question, Fiorini et al. [FMP+12] showed exponential lower
bounds on the linear extension complexity of many polytopes of interest, including the correla-
tion and Traveling Salesman polytopes. Rothvoß followed this by showing an exponential lower
bound on the linear extension complexity of the matching polytope [Rot14], even though finding a
maximum matching can be done efficiently.

As semidefinite programming is more powerful than linear programming it is natural to ask
the same questions for semidefinite extensions. A semidefinite extension of a polytope P is an
affine slice of the cone of n-by-n positive semidefinite matrices that projects to P . The proof
of Yannakakis can be adapted to this setting, and Gouveia et al. showed that the semidefinite
extension complexity of P is equal to the PSD rank of the slack matrix of P [GPT13].

The correlation polytope CORn is the convex hull of the rank-one boolean matrices xxT for
x ∈ {0, 1}n. The correlation polytope is closely related to the cut polytope and has proven to be
the most convenient polytope to study for extension complexity lower bounds. In a very recent
breakthrough, Lee et al. have given exponential lower bounds on the PSD-rank of the slack matrix
of the correlation polytope [LSR14]. Before this, no nontrivial bounds were known on the PSD-
rank of the correlation polytope, and indeed no techniques had been developed to approach this
problem.

Our main result is a lower bound of 3n/3−1 on the square root rank of the slack matrix of CORn.
We do this by showing a severe algebraic limitation to factorizations of the form A = B ◦ B. Our
techniques are fairly general and apply to many other matrices, even those that actually have small
PSD rank. Though the main open problem of showing an exponential lower bound on the PSD-
rank of the correlation polytope has now been answered, our techniques may still be interesting
as many constructions of PSD factorizations are actually rank-one and so their size corresponds to
square root rank.

2 Preliminaries

2.1 Notations and definitions
Let [n] = {1, 2, . . . , n}. As usual, we refer to the fields of rational, real, and complex numbers as
Q,R, and C. A subfield of the real numbers is a field F ⊆ R that is a subset of the real numbers.
Any subfield of the real numbers contains the rationals Q.

The correlation polytope CORn is the convex hull of matrices of the form xxT , where x ∈
{0, 1}n is a column vector, and xT is the transpose of x. In other words, CORn = conv{xxT ∈
Rn×n : x ∈ {0, 1}n}.
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For an m-by-n matrix A, we refer to the (i, j) entry as A(i, j). We use ◦ for the entrywise
product, that is (A ◦ B)(i, j) = A(i, j)B(i, j). We denote the rank of A by rank(A), and if
m = n, denote the trace as Tr(A) =

∑
iA(i, i). If all the entries of A are either zero or positive,

we call A a nonnegative matrix.
If a matrixA is nonnegative, its nonnegative rank, denoted rank+(A), is the minimum number

of rank-one nonnegative matrices that sum to A. The positive semidefinite rank is defined as
follows.

Definition 1 Let A be a nonnegative m-by-n matrix. A positive semidefinite factorization (over
R) of A of size r is given by r-by-r real positive semidefinite matrices E1, . . . , Em ∈ Rr×r and
F1, . . . , Fn ∈ Rr×r satisfying A(i, j) = Tr(EiFj) for all i = 1, . . . ,m and j = 1, . . . , n. The
positive semidefinite rank denoted rankpsd(A) of A is the smallest integer r such that A has a
PSD-factorization of size r.

The main quantity of interest in this paper is the square root rank.

Definition 2 Let A be a nonnegative m-by-n matrix. The square root rank of A is the minimum
rank of an m-by-n matrix B with A = B ◦B, and is denoted rank√(A).

For a nonnegative matrix A, we will use
√
A for the entrywise square root of A, that is

√
A(i, j) =√

A(i, j).

2.2 Basic facts about PSD-rank
In this section we discuss some basic results about the PSD-rank. Nearly all of these results can
be found in the excellent survey [FGP+14]. The first fact is an easy lower bound on PSD-rank in
terms of the normal rank.

Fact 3 Let A be a nonnegative matrix. Then rankpsd(A) ≥
√
rank(A).

It is also easy to see that the nonnegative rank is an upper bound on the PSD-rank.

Fact 4 Let A be nonnegative matrix. Then rankpsd(A) ≤ rank+(A).

A nonnegative rank factorization corresponds to a PSD-factorization by diagonal matricies.
At the other end of the spectrum, one can consider PSD-factorizations by rank-one matrices.

An equivalent characterization of the square root rank is the minimal size of a PSD-factorization
by rank-one PSD matrices.

Fact 5 ([GRT12]) Let A be a nonnegative m-by-n matrix. Then rank√(A) is equal to the mini-
mum size of a PSD factorizationA(i, j) = Tr(EiFj) where all the PSD matricesE1, . . . , Em, F1, . . . , Fn

are rank-one.

In particular, this characterization shows the following.

Corollary 6 ([GPT13, Zha12]) For a nonnegative matrix A

rankpsd(A) ≤ rank√(A)
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It can sometimes be difficult to see how to use the power of positive semidefinite factorizations to
show upper bounds on the PSD-rank. For this reason, many upper bounds on PSD-rank simply use
Fact 6. This upper bound can also be tight in a nontrivial way.

An example of this can be seen with the inner product matrix. This matrix has been ex-
tensively studied in communication complexity and is defined as IPn(x, y) =

∑n
i=1 xiyi mod 2

for x, y ∈ {0, 1}n. Letting N = 2n be the size of the matrix IPn, Lee et al. [LWd14] prove
that rank√(IPn) ≤ 2

√
N . Note that IPn is full-rank, thus according to Fact 3 it holds that

rankpsd(IPn) ≥
√
N , which implies that the upper bound given by Fact 6 is tight in this case

up to a small constant factor. Note that
√
IPn = IPn and thus has high rank—the construction

crucially uses the freedom of toggling the sign of each entry.
The usual rank of a matrix A is equal to the minimal number of rank-one matrices that sum to

A. There is no known analogous “decomposition” formulation for the PSD-rank. The following
lemma, however, does give an approximate characterization of PSD-rank in terms of a decompo-
sition of matrices with rank-one PSD factorizations. We first learned of this lemma from Ronald
de Wolf [Wol12].

Lemma 7 Suppose that the PSD-rank of A is d. Then there is a decomposition

A =
d2∑
i=1

Ni ◦Ni

where each Ni is of rank at most d.

Proof: Suppose Ex and Fy is an optimum PSD-factorization for A, i.e., A(x, y) = Tr(ExFy)

and Ex, Fy are d-by-d PSD matrices. For each x and y, let Ex =
∑d

k1=1 |αk1
x 〉〈αk1

x | and Fy =∑d
k2=1 |βk2

y 〉〈βk2
y | be spectral decompositions of Ex and Fy. Then

A(x, y) =
d∑

k1,k2=1

|〈αk1
x |βk2

y 〉|2.

For each k1 and k2, define a matrix Ak1,k2 by setting the entries as Ak1,k2(x, y) = 〈αk1
x |βk2

y 〉. Then
its rank is at most d and A =

∑d
k1,k2=1Ak1,k2 ◦ Ak1,k2 . 2

3 Square root rank of the correlation polytope
In this section we prove that the square root rank of the correlation polytope CORn is at least
3n/3−1. Our approach uses an algebraic method to lower bound the rank of certain matrices based
on the roots of their characteristic polynomials.

For a univariate polynomial q(x) with real coefficients, a familiar theorem states that the mul-
tiplicity of a + bi and a − bi as roots of q is the same. The key to our lower bounds will be the
following generalization of this to subfields of the real numbers. A similar statement can be found
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in any textbook on Galois theory, see for example Lemma 5.6 of [Ste04]. We include a proof for
completeness.

Theorem 8 Let F be a subfield of the real numbers and p a prime such that
√
p 6∈ F. Then for any

univariate polynomial q(x) with coefficients in F the multiplicity of
√
p and −√p as roots of q is

the same.

Proof: Let m(x) = x2 − p. We first see that m divides any polynomial that has a root at
√
p.

Let h be a polynomial with coefficients in F and a root at
√
p. By the division algorithm h =

mg + r where r is a polynomial with coefficients in F that is either the constant zero function or a
polynomial of degree at most 1. If h(

√
p) = 0 then r must be the zero function, since no nonzero

polynomial of degree at most 1 polynomial can have a root at
√
p, as

√
p 6∈ F. The same argument

holds for a polynomial with a root at −√p.
Now let k be the largest power of m that divides q, that is such that q = mkh for some

polynomial h with coefficients in F and mk+1 does not divide q in F. By definition, m does
not divide h, thus h cannot have a root at

√
p or −√p. This shows that the multiplicity of both√

p,−√p as roots of q is k, and is the same. 2

We can use Theorem 8 to show a lower bound on the rank of certain matrices in the following
way.

Theorem 9 Let F be a subfield of the real numbers and p a prime such that
√
p 6∈ F. Let A ∈

FN×N . Then rank(
√
pI + A) ≥

⌈
N
2

⌉
.

Proof: We will show that the nullity of
√
pI + A is at most bN

2
c. The theorem then follows from

the rank-nullity theorem.
A vector v is in the nullspace of

√
pI + A if and only if Av = −√pv, meaning that v is

an eigenvector of A with eigenvalue −√p. Thus the nullity of
√
pI + A is equal to the geometric

multiplicity of−√p as an eigenvalue ofA. The geometric multiplicity of−√p is in turn at most the
algebraic multiplicity of −√p as a root of the characteristic polynomial q(x) = det(xI −A) of A.
The characteristic polynomial q(x) has all coefficients in F as all entries of A are in F. Moreover,
q(x) is a polynomial of degree at most N and so has at most N roots. Applying Theorem 8, we see
that the multiplicity of −√p can be at most bN

2
c as it occurs with the same multiplicity as

√
p. 2

3.1 Application to the correlation polytope
A great insight of [FMP+12] is to identify a concrete hard submatrix of the slack matrix of the
correlation polytope. The submatrix of the slack matrix of CORn they consider is Bn(x, y) =
(xTy−1)2 for x, y ∈ {0, 1}n. This matrix is an instance of unique disjointness—an entry is 1 when
strings are disjoint, and 0 when strings have a unique intersection. Results from communication
complexity [Raz92, Wol00] show that this matrix has exponential nonnegative rank, giving the
desired lower bound on linear extended formulation size.
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For PSD-rank, however, this matrix is not a suitable candidate as An = [xTy − 1]x,y∈{0,1}n
satisfies An ◦ An = Bn and has rank at most n+ 1.

We will instead consider the 2n-by-2n matrix Mn defined as Mn(x, y) = (xTy − 1)(xTy − 2)
for x, y ∈ {0, 1}n, proposed as a candidate to have large PSD-rank by one of the authors [Lee12].
This matrix still enjoys the unique disjointness property, but is no longer obviously the entrywise
square of a low rank matrix. We show that in fact the square root rank of Mn is exponential. First,
let us verify that it is a submatrix of the slack matrix of the correlation polytope.

Lemma 10 The 2n-by-2n matrix Mn = [(xTy − 1)(xTy − 2)]x,y∈{0,1}n is a submatrix of the slack
matrix of the correlation polytope CORn.

Proof: For strings x, y ∈ {0, 1}n note that Tr(xxTyyT ) = (xTy)2, and Tr(diag(x)yyT ) = xTy,
where diag(x) is the diagonal matrix whose diagonal is x. The polynomial (z − 1)(z − 2) =
z2 − 3z + 2 is nonnegative on integers z, thus for any x ∈ {0, 1}n, vertex yyT of the correlation
polytope satisfies the linear inequality

(xTy − 1)(xTy − 2) = Tr((xxT − 3diag(x))yyT ) + 2 ≥ 0. (1)

The entry Mn(x, y) for x, y ∈ {0, 1}n is thus the slack of the vertex yyT with the inequality
Equation (1) corresponding to x. 2

For the lower bound on square root rank, we will actually work with a submatrix of Mn. It is
this matrix that we will focus on for the remainder of the paper.

Definition 11 Fix n and let p be the prime closest to n/2 (in case of a tie, pick the smaller one).
Define the matrix Pn to be the submatrix of Mn restricted to strings of Hamming weight p+ 1.

Note that the size of Pn is
(

n
p+1

)
. By Bertand’s Postulate (less well known as the Bertrand-

Chebyshev theorem), for any integer m > 1, there is always at least one prime number q such
that m < q < 2m. Choosing m = dn/3− 1e, then there exists a prime number in the interval
(dn/3e − 1, 2 · dn/3e − 2). This shows that the size of Pn is at least

(
n
dn/3e

)
.

Theorem 12 Let n be a positive integer and let N be the size of Pn. Then

rank√(Pn) ≥
⌈
N

2

⌉
.

In particular, rank√(Pn) ≥ 3n/3−1.

Proof: Let B be a matrix such that B ◦B = Pn. We will lower bound the rank of B.
Note that all diagonal entries of Pn are equal to p(p − 1). Thus all diagonal entries of B are

±
√
p(p− 1). Further, all off diagonal entries of Pn are of the form s(s− 1), where s is an integer

strictly smaller than p.
By multiplying B on the left by a diagonal matrix D whose diagonal entries are± 1√

p−1 we can
obtain a matrix C = DB with the same rank as B and whose diagonal entries are all

√
p. Further,

all off diagonal entries of C are strictly less than
√
p.

6



Let p1, . . . , pt be an enumeration of all the primes strictly less than p, and let F = Q(
√
p1, . . . ,

√
pt).

Note that
√
p 6∈ F (see exercise 6.15 of [Ste04]). On the other hand, all off diagonal entries of C

are in F. Thus C =
√
pI + A for a matrix A with all entries in F. Applying Theorem 8 we find

that the rank of C is at least
⌈
N
2

⌉
. 2

4 An extension to more general decompositions
We have now shown a lower bound on the square root rank of Pn. In this section we see that this
lower bound can be leveraged into bounds on more general kinds of PSD factorizations. We will
look at decompositions of the form

M =
d2∑
j=1

Nj ◦Nj . (2)

Let k be the maximum rank of Ni over j ∈ [d2] in such a decomposition. If we can show that
kd2 > r for any decomposition as in (2) then by Lemma 7 this would mean the PSD-rank of M is
at least r1/3.

We are able to do this provided certain restrictions are put on the matrices Ni. Namely, we can
show the following.

Theorem 13 Let Pn be as in Definition 11 and consider a decomposition of the form

Pn =
d2∑
j=1

(Bj ◦
√
Pn) ◦ (Bj ◦

√
Pn),

where each matrix Bj has rational entries. Let k the maximum of rank(Bj ◦
√
Pn) over j ∈ [d2].

Then kd2 ≥ 1
2

(
n

dn3 e
)
.

For the proof of the theorem we will use the following lemma. We delay the proof of this
lemma until after the proof of the theorem.

Lemma 14 For any positive integer `, there are matrices with rational entries σ1, . . . , σ` each of
size 4d`/2e such that for any real numbers a1, . . . , ak(∑

j

ajσj

)(∑
j

ajσj

)
=

(∑
j

a2j

)
I4d`/2e .

Proof of Theorem 13 Let k be as in the theorem, and for simplicity assume that d is even—the
case where d is odd can be verified in the same way. Let N be the size of Pn. Let σ1, . . . , σd2 be
matrices defined in Lemma 14 each of size 2d

2 .
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For each j ∈ [d2], we form a new matrix Aj = (Bj ◦
√
Pn) ⊗ σj . This matrix has size N2d

2 .
Further we let

C =
d2∑
j=1

Aj .

Since each Bj ◦
√
Pn is of rank at most k, it follows that the rank of C will be at most kd2 · 2d2 .

We now lower bound the rank of C. To do this we first define a block diagonal matrix D of
size N2d

2 with blocks of size 2d
2 . The ith diagonal block is defined as 1√

p−1
∑

j Bj(i, i)σj . By
Lemma 14 (∑

j

Bj(i, i)σj

)(∑
j

Bj(i, i)σj

)
= I2d2

holds for every i ∈ [N ], thus the matrix D has full rank and DC will have the same rank as C. We
will actually lower bound the rank of DC.

We claim that the diagonal blocks of DC are
√
p · I2d2 . Again by Lemma 14, the ith diagonal

block of DC will be(
1√
p− 1

∑
j

Bj(i, i)σj

)(∑
j

Bj(i, i)
√
Pn(i, i)σj

)
=
∑
j

Bj(i, i)
2

√
Pn(i, i)

p− 1
I2d2

=
√
pI2d2 .

Now consider entries in the off diagonal blocks ofDC. As before let p1, . . . , pt be an enumera-
tion of the primes strictly less than p and set F = Q(

√
p1, . . . ,

√
pt). As the Bj and σj matrices are

rational, the off diagonal blocks of each Aj have entries in F. Further, D is a matrix with entries in
F, thus the off diagonal blocks of DC are also in F. As

√
p 6∈ F we can again apply Theorem 9 to

conclude rank(C) ≥ 1
2
N2d

2 . This implies kd2 ≥ N
2

, which gives the theorem. 2

Proof of Lemma 14 Define

X =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , Y =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , Z =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

These are real versions of the Pauli matrices. They satisfy XY = −Y X,XZ = −ZX, Y Z =
−ZY and X2 = Y 2 = Z2 = I4. Define

σ2j+1 = Z⊗j ⊗ Y ⊗ I⊗(d`/2e−j−14

σ2j = Z⊗j ⊗X ⊗ I⊗(d`/2e−j−14

Any σi, σj for i 6= j anti-commute, while σ2
i = I4d`/2e which gives the property we need. 2
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5 Perspective
There can be an unbounded gap between the square root rank and the PSD-rank of a matrix. Fawzi
et al. [FGP+14] gave an example of a family of k-by-k matrices with square root rank k and PSD-
rank 2. Let n1, . . . , nk be an increasing sequence of integers such that 2ni − 1 is prime for every
i ∈ [k]. Define Q = [ni +nj − 1]i,j∈[k]. It can be easily seen that Q has normal rank and PSD-rank
2, yet Fawzi et al. proved that the square root rank is full. This proof was the inspiration for our
Theorem 12.

We now give another example of a separation between square root rank and PSD-rank. This
example shows the difficulties of generalizing our approach to show lower bounds on the PSD-rank
itself. Even decompositions of the form studied in Theorem 13 have severe limitations.

Define a matrix indexed by x, y ∈ {0, 1}n as Fn(x, y) = xTy(xTy − 1). This matrix is also a
slack matrix of the correlation polytope as can be verified by a very similar proof to Lemma 10.
It can also be verified that the proof Theorem 12 can be simply modified to show that Fn has
exponential square root rank, and even that the analogue of Theorem 13 holds for Fn.

On the other hand, the PSD-rank of Fn is small. In fact, even the nonnegative rank of Fn is
small.

Proposition 15

rank+(Fn) ≤
(
n

2

)
.

Proof: We recursively upper bound the rank of Fn. The matrix F1 is the all zero matrix and
has nonnegative rank 0. Ordering the rows and columns of Fn+1 by lexicographical order of
x ∈ {0, 1}n we can see

Fn+1 =

[
Fn Fn

Fn Fn +Dn

]
,

where Dn = [2xTy]x,y∈{0,1}n . The matrix Dn has nonnegative rank at most n. Now using
rank+(A + B) ≤ rank+(A) + rank+(B) and rank+(A ⊗ B) ≤ rank+(A)rank+(B) we
find rank+(Fn+1) ≤ rank+(Fn) + n. Solving the recurrence gives rank+(Fn) ≤

(
n
2

)
. 2

This example shows that, while our bounds can be powerful for the square root rank, this ap-
proach is not likely to give exponential lower bounds on the PSD-rank of the correlation polytope.
Indeed the techniques used in [LSR14] are quite different from those studied here.
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