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Abstract

Robustness to capitalization errors is a highly

desirable characteristic of named entity recog-

nizers, yet we find standard models for the task

are surprisingly brittle to such noise. Exist-

ing methods to improve robustness to the noise

completely discard given orthographic infor-

mation, which significantly degrades their per-

formance on well-formed text. We propose a

simple alternative approach based on data aug-

mentation, which allows the model to learn

to utilize or ignore orthographic information

depending on its usefulness in the context.

It achieves competitive robustness to capital-

ization errors while making negligible com-

promise to its performance on well-formed

text and significantly improving generalization

power on noisy user-generated text. Our ex-

periments clearly and consistently validate our

claim across different types of machine learn-

ing models, languages, and dataset sizes.

1 Introduction

In the last two decades, substantial progress

has been made on the task of named en-

tity recognition (NER), as it has enjoyed

the development of probabilistic modeling

(Lafferty et al., 2001; Finkel et al., 2005),

methodology (Ratinov and Roth, 2009), deep

learning (Collobert et al., 2011; Huang et al.,

2015; Lample et al., 2016) as well as semi-

supervised learning (Peters et al., 2017, 2018).

Evaluation of these developments, however, has

been mostly focused on their impact on global

average metrics, most notably the micro-averaged

F1 score (Chinchor, 1992).

For practical applications of NER, however,

there can be other considerations for model

evaluation. While standard training data for

the task consists mainly of well-formed text

(Tjong Kim Sang, 2002; Pradhan and Xue, 2009),

models trained on such data are often applied on

a broad range of domains and genres by users

who are not necessarily NLP experts, thanks to

the proliferation of toolkits (Manning et al., 2014)

and general-purpose machine learning services.

Therefore, there is an increasing demand for the

strong robustness of models to unexpected noise.

In this paper, we tackle one of the most com-

mon types of noise in applications of NER: un-

reliable capitalization. Noisiness in capitaliza-

tion is a typical characteristic of user-generated

text (Ritter et al., 2011; Baldwin et al., 2015),

but it is not uncommon even in formal text.

Headings, legal documents, or emphasized sen-

tences are often capitalized. All-lowercased text,

on the other hand, can be produced in large

scale from upstream machine learning models

such as speech recognizers and machine trans-

lators (Kubala et al., 1998), or processing steps

in the data pipeline which are not fully under

the control of the practitioner. Although a text

without correct capitalization is perfectly legi-

ble for human readers (Cattell, 1886; Rayner,

1975) with only a minor impact on the reading

speed (Tinker and Paterson, 1928; Arditi and Cho,

2007), we show that typical NER models are

surprisingly brittle to all-uppercasing or all-

lowercasing of text. The lack of robustness these

models show to such common types of noise

makes them unreliable, especially when character-

istics of target text are not known a priori.

There are two standard treatments on the

problem in the literature. The first is to

train a case-agnostic model (Kubala et al., 1998;

Robinson et al., 1999), and the second is to explic-

itly correct the capitalization (Srihari et al., 2003;

Lita et al., 2003; Ritter et al., 2011). One of the

main contributions of this paper is to empiri-

cally evaluate the effectiveness of these techniques

across models, languages, and dataset sizes. How-
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Annotation O O O B-ORG I-ORG E-ORG

(a) Original Sentence I live in New York City
(b) Lower-cased Sentence i live in new york city
(c) Upper-cased Sentence I LIVE IN NEW YORK CITY

Table 1: Example of Data Augmentation

ever, both approaches have clear conceptual lim-

itations. Case-agnostic models discard ortho-

graphic information (how the given text was cap-

italized), which is considered to be highly useful

(Robinson et al., 1999); our experimental results

also support this. The second approach of cor-

recting the capitalization of the text, on the other

hand, requires an access to a high-quality truecas-

ing model, and errors from the truecasing model

would cascade to final named entity predictions.

We argue that an ideal approach should take

a full advantage of orthographic information

when it is correctly present, but rather than as-

suming the information to be always perfect,

the model should be able to learn to ignore

the orthographic information when it is unre-

liable. To this end, we propose a novel ap-

proach based on data augmentation (Simard et al.,

2003). In computer vision, data augmenta-

tion is a highly successful standard technique

(Krizhevsky et al., 2012), and it has found adop-

tions in natural language processing tasks such

as text classification (Zhang and LeCun, 2015),

question-answering (Yu et al., 2018) and low-

resource learning (Sahin and Steedman, 2018).

Consistently across a wide range of models (lin-

ear models, deep learning models to deep con-

textualized models), languages (English, German,

Dutch, and Spanish), and dataset sizes (CoNLL

2003 and OntoNotes 5.0), the proposed method

shows strong robustness while making little com-

promise to the performance on well-formed text.

2 Formulation

Let x = (x1, x2, . . . , xn) be a sequence of

words in a sentence. We follow the standard ap-

proach of formulating NER as a sequence tagging

task (Rabiner, 1989; Lafferty et al., 2001; Collins,

2002). That is, we predict a sequence of tags

y = (y1, y2, . . . , yn) where each yi identifies the

type of the entity the word xi belongs to, as well

as the position of it in the surface form according

to IOBES scheme (Uchimoto et al., 2000). See

Table 1 (a) for an example annotated sentence.

We train probabilistic models under the maximum

likelihood principle, which produce a probability

score P [y | x] for any possible output sequence y.

All-uppercasing and all-lowercasing are com-

mon types of capitalization errors. Let upper(xi)
and lower(xi) be functions that lower-cases and

upper-cases the word xi, respectively. Robust-

ness of a probabilistic model to these types of

noise can be understood as the quality of scor-

ing function P[y | upper(x1), . . . , upper(xn)] and

P[y | lower(x1), . . . , lower(xn)] in predicting the

correct annotation y, which can still be quanti-

fied with standard evaluation metrics such as the

micro-F1 score.

3 Prior Work

There are two common strategies to improve ro-

bustness to capitalization errors. The first is to

completely ignore orthograhpic information by

using case-agnostic models (Kubala et al., 1998;

Robinson et al., 1999). For linear models, this can

be achieved by restricting the choice of features

to case-agnostic ones. On the other hand, deep

learning models without hand-curated features

(Lample et al., 2016; Chiu and Nichols, 2016) can

be easily made case-agnostic by lower-casing ev-

ery input to the model. The second strategy is

to explictly correct the capitalization by using an-

other model trained for this purpose, which is

called “truecasing”(Srihari et al., 2003; Lita et al.,

2003). Both methods, however, have the com-

mon limitation that they discard orthographic in-

formation in the target text, which can be correct;

this leads to degradation of performance on well-

formed text.

4 Data Augmentation

Data augmentation refers to a technique of in-

creasing the size of training data by adding label-

preserving transformations of them (Simard et al.,

2003). For example, in image classification, an

object inside of an image does not change if the

image is rotated, translated, or slightly skewed;

most people would still recognize the same object

they would find in the original image. By train-

ing a model on transformed versions of training



Model Method
CoNLL-2003 English OntoNotes 5.0 English Transfer to Twitter

Original Lower Upper Original Lower Upper Original Lower Upper

Linear

Baseline 89.2 57.8 75.2 81.7 37.4 15.1 24.4 6.9 20.2
Caseless 83.7 83.7 83.7 75.5 75.5 75.5 20.3 20.3 20.3

Truecasing 83.8 83.8 83.8 76.6 76.6 76.6 24.0 24.0 24.0
DA 88.2 85.6 86.1 - - - 28.2 26.4 27.0

BiLSTM

Baseline 90.8 0.4 52.3 87.6 38.9 15.5 18.1 0.1 7.9
Caseless 85.7 85.7 85.7 83.2 83.2 83.2 20.3 20.3 20.3

Truecasing 84.6 84.6 84.6 81.7 81.7 81.7 18.7 18.7 18.7
DA 90.4 85.3 83.8 87.5 83.2 82.6 21.2 17.7 18.4

ELMo

Baseline 92.0 34.8 71.6 88.7 66.6 48.9 31.6 1.5 19.6
Caseless 89.1 89.1 89.1 85.3 85.3 85.3 31.8 31.8 31.8

Truecasing 86.2 86.2 86.2 83.2 83.2 83.2 28.8 28.8 28.8
DA 91.3 88.7 87.9 88.3 85.8 83.6 34.6 31.7 30.2

Table 2: F1 scores on original, lower-cased, and upper-cased test sets of English Datasets. Stanford Core NLP

could not be trained on the augmented dataset even with 512GB of RAM.

images, the model becomes invariant to the trans-

formations used (Krizhevsky et al., 2012).

In order to improve the robustness of NER

models to capitalization errors, we appeal to the

same idea. When a sentence is all-lowercased

or all-uppercased as in Table 1 (b) and (c), each

word would still correspond to the same en-

tity. This implies such transformations are also

label-preserving ones: for a sentence x and its

ground-truth annotation y, y would still be a cor-

rect annotation for the all-uppercased sentence

(upper(x1), . . . , upper(xn)) as well as the all-

lowercased version (lower(x1), . . . , lower(xn)).
Indeed, all three sentences (a), (b) and (c) in Ta-

ble 1 would share the same annotation.

5 Experiments

We consider following three models, each of

which is state-of-the-art in their respective group:

Linear: Linear CRF model (Finkel et al., 2005)

from Stanford Core NLP (Manning et al., 2014),

which is representative of feature engineering

approaches. BiLSTM: Deep learning model

from Lample et al. (2016) which uses bidirec-

tional LSTM for both character-level encoder and

word-level encoder with CRF loss. This is the

state-of-the-art supervised deep learning approach

(Reimers and Gurevych, 2017). ELMo: Bidirec-

tional LSTM-CRF model which uses contextual-

ized features from deep bidirectional LSTM lan-

guage model (Peters et al., 2018). For all models,

we used hyperparameters from original papers.

We compare four strategies: Baseline: Models

are trained on unmodified training data. Caseless:

We lower-case input data both at the training time

and at the test time. Truecasing: Models are still

trained on unmodified training data, but every in-

put to test data is “truecased” (Lita et al., 2003)

using CRF truecasing model from Stanford Core

NLP (Manning et al., 2014), which ignores given

orthographic information in the text. Due to the

lack of access to truecasing models in other lan-

guages, this strategy was used only on English.

DA (Data Augmentation): We augment the orig-

inal training set with upper-cased and lower-cased

versions of it, as discussed in Section 4.

We evaluate these models and methods on three

versions of the test set for each dataset: Original:

Original test data. Upper: All words are upper-

cased. Lower: All words are lower-cased. Note

that both Caseless and Truecasing method perform

equally on all three versions because they ignore

any original orthographic information in the test

dataset. We focus on micro-averaged F1 scores.

We use CoNLL-2002 Spanish and Dutch

(Tjong Kim Sang, 2002) and CoNLL-2003 En-

glish and German (Sang and De Meulder, 2003) to

cover four languages, all of which orthographic in-

formation is useful in idenfitying named entities,

and upper or lower-casing of text is straightfor-

ward. We additionally evaluate on OntoNotes 5.0

English (Pradhan and Xue, 2009), which is about

five times larger than CoNLL datasets and con-

tains more diverse genres. F1 scores are shown

in Table 2 and 3.

Question 1: How robust are NER models

to capitalization errors? Models trained with

the standard Baseline strategy suffer from signif-

icant loss of performance when the test sentence

is upper/lower-cased (compare ‘Original’ column

with ‘Lower’ and ‘Upper’). For example, F1 score

of BiLSTM on lower-cased CoNLL-2003 English

is abysmal 0.4%, completely losing any predic-



Model Method
CoNLL-2002 Spanish CoNLL-2002 Dutch CoNLL-2003 German

Original Lower Upper Original Lower Upper Original Lower Upper

Linear
Baseline 80.7 1.1 22.1 79.1 9.8 9.7 68.4 11.8 11.3
Caseless 69.9 69.9 69.9 63.9 63.9 63.9 53.3 53.3 53.3

DA 77.3 70.9 73.2 74.4 68.5 68.5 61.8 57.8 62.8

BiLSTM
Baseline 85.4 1.0 26.8 87.3 2.0 15.8 79.5 6.5 9.8
Caseless 77.8 77.8 77.8 77.7 77.7 77.7 69.8 69.8 69.8

DA 85.3 78.4 76.5 84.8 75.0 75.9 76.8 69.7 69.7

Table 3: F1 scores on original, lower-cased, and upper-cased test sets of Non-English Datasets

tive power. Linear and ELMo are more robust

than BiLSTM thanks to smaller capacity and semi-

supervision respectively, but the degradation is

still strong, ranging 20pp to 60pp loss in F1.

Question 2: How effective Caseless, True-

casing, and Data Augmentation approaches are

in improving robustness of models? All meth-

ods show similar levels of performance on lower-

cased or uppercased text. Since Caseless and Data

Augmentation strategy do not require additional

language-specifc resource as truecasing does, they

seem to be superior to the truecasing approach,

at least on CoNLL-2003 English and OntoNotes

5.0 datasets with the particular truecasing model

used. Across all datasets, the performance of Lin-

ear model on lower-cased or upper-cased test set

is consistently enhanced with data augmentation,

compared with caseless models.

Question 3: How much performance on well-

formed text is sacrificed due to robustness?

Caseless and Truecasing methods are perfectly ro-

bust to capitalization errors, but only at the cost of

significant degradation on well-formed text: case-

less and truecasing strategy lose 5.1pp and 6.2pp

respectively on the original test set of CoNLL-

2003 English compared to Baseline strategy, and

on non-English datasets the drop is even big-

ger. On the other hand, data augmentation pre-

serves most of the performance on the original

test set: with BiLSTM, its F1 score drops by only

0.4pp and 0.1pp respectively on CoNLL-2003 and

OntoNotes 5.0 English. On non-English datasets,

the drop is bigger (0.1pp on Spanish but 2.5pp on

Dutch and 2.7pp on German) but still data aug-

mentation performs about 7pp higher than Case-

less on original well-formed text across languages.

Question 4: How do models trained on well-

formed text generalize to noisy user-generated

text? The robustness of models is especially

important when the characteristics of target text

are not known at the training time and can devi-

ate significantly from those of training data. To

this end, we trained models on CoNLL 2003-

English, and evaluated them on annotations of

Twitter data from Fromreide et al. (2014), which

exhibits natural errors of capitalization common

in user-generated text. ‘Transfer to Twitter’ col-

umn of Table 2 reports results. In this experi-

ment, Data Augmentation approach consistently

and significantly improves upon Baseline strategy

by 3.8pp, 3.1pp, and 3.0pp with Linear, BiLSTM,

and ELMo models respectively on Original test set

of Twitter, demonstrating much strengthened gen-

eralization power when the test data is noisier than

the training data.

In order to understand the results, we exam-

ined some samples from the dataset. Indeed, on

a sentence like ‘OHIO IS STUPID I HATE IT’,

BiLSTM model trained with Baseline strategy was

unable to identify ‘OHIO’ as a location although

the state is mentioned fifteen times in the training

dataset of CoNLL 2003-English as ‘Ohio’. BiL-

STM models trained with all other strategies cor-

rectly identified the state. On the other hand, on

another sample sentence ‘Someone come with me

to Raging Waters on Monday’, BiLSTM models

from Baseline and Data Augmentation strategies

were able to correctly identify ‘Raging Waters’

as a location thanks to the proper capitalization,

while the model from Caseless strategy failed on

the entity due to its ignorance of orthographic in-

formation.

6 Conclusion

We proposed a data augmentation strategy for

improving robustness of NER models to capital-

ization errors. Compared to previous methods,

data augmentation provides competitive robust-

ness while not sacrificing its performance on well-

formed text, and improving generalization to noisy

text. This is consistently observed across mod-

els, languages, and dataset sizes. Also, data aug-

mentation does not require additional language-

specific resource, and is trivial to implement for



many natural languages. Therefore, we recom-

mend to use data augmentation by default for

training NER models, especially when character-

istics of test data are little known a priori.
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