Indefinite Reasoning
with
Definite Rules
L. Thorne McCarty and Ron van der Meyden
Computer Science Department
Rutgers University
New Brunswick, NJ 08903, USA
mccarty@cs.rutgers.edu, meyden@paul.rutgers.edu

Abstract

In this paper we present a novel explanation
of the source of indefinite information in com-
mon sense reasoning: Indefinite information
arises from reports about the world expressed
in terms of concepts that have been defined us-
ing only definite rules. Adopting this point of
view, we show that first-order logic is insuffi-
ciently expressive to handle important exam-
ples of common sense reasoning. As a rem-
edy, we propose the use of circumscribed def-
inite rules, and we then investigate the proof
theory of this more expressive framework. We
consider two approaches: First, prototypical
proofs, a special type of proof by induction,
which yields a sound proof theory. Second, we
describe cases in which there exists a decision
procedure for answering queries, a particularly
significant result because it shows that it is pos-
sible to have decidable query processing in cir-
cumscribed theories that are not equivalent to
any first order theory.

1 Introduction

Common sense reasoning has a bias towards definite
information, as many researchers have noted. Thus
Johnson-Laird [1983] has argued that human beings

draw inferences in particular "mental models', and
Levesque [1986] has urged, for similar reasons, the study
of "vivid knowledge' in artificial intelligence. This bias
towards definite information has also permeated com-
puter science proper. The field of logic programming, for
example, is based on a subset of first-order logic consist-
ing entirely of definite clauses. Indeed, Makowsky [1985]
has argued that "Horn formulas matter" in computer
science precisely because they have a unique minimal
model.

If this is so, then how does .indefinite information arise
in common sense reasoning? In this paper, we adopt a
novel point of view on this question, and explore the con-
sequences. We suggest (as a Gedanken experiment) that
common sense reasoning is based exclusively on definite
rules, and that indefinite information arises from the ap-
plication of these definite rules to definite facts in situa-

890 Logic Programming

tions where communication is almost always incomplete.
An individual who receives reports about the world does
not usually know the definite facts upon which these re-
ports are based, and for such an individual the world is
a (chaotically!) indefinite place. Out of necessity, an in-
dividual in this situation does indefinite reasoning with
definite rules.

If we adopt this point of view, however, it turns out
that the standard way of representing indefinite infor-
mation in artificial intelligence - i.e., by a first-order
language capable of asserting disjunctive and existen-
tial facts - is inadequate. We show in Section 3 that
first-order logic cannot express a simple form of in-
definite information that seems essential for common
sense reasoning. Instead, we suggest in Section 4 that
an adequate representation of indefinite information
requires the wuse of circumscription [McCarthy, 1980;
McCarthy, 1986]. But circumscription is a second-order
formalism. Is it plausible to propose such a complex
logical language for such a mundane purpose as com-
mon sense reasoning? We believe the answer is: Yes.
The principal technical contribution of the present pa-
per, in Sections 5 and 6, is to suggest two new tech-
niques for computing the inferences that follow from a
circumscribed definite rulebase. These techniques apply
in special cases, of course, but they seem promising for
various practical applications.

In Section 5, we develop the notion of a prototypi-
cal proof, which is a special type of inductive proof. If
a query is entailed by a circumscribed rulebase, then
a prototypical proof is guaranteed to exist, and if a
prototypical proof succeeds, then an induction schema
can be automatically generated. Furthermore, an in-
duction schema in our system has very simple and ap-
pealing proof-theoretic properties. This means that we
can search systematically for inductive proofs, at least
in certain special cases that seem to be of considerable
practical importance. These techniques cannot give us
a complete proof procedure, of course. But in Section 6,
we show that an actual decision procedure exists for cer-
tain other special cases that seem to be of practical im-
portance. Previous work on circumscription has tried to
find conditions under which a circumscribed theory "col-
lapses" to a first-order theory [Lifschitz, 1985], so that
standard theorem-provers for first-order logic could then
be applied. However, these conditions are extremely re-

strictive, and recent work by Kolaitis and Papadimitriou
[1990] has shown that the existence ofan equivalent first-
order theory is itself an undecidable property. Our re-
sults in Section 6 improve upon this previous work in
two ways: (i) we show that complete query-answering is
possible even for theories whose circumscription is not
first-order; and (ii) we provide a full decision procedure
in such cases rather than a semi-decidable proof theory.

The overall framework in which we have conducted
this research is presented in Section 2, which is based on
previously published work [McCarty, 1988a; McCarty,
1988b; Bonner et al, 1989]. In Section 2, we define pre-
cisely what we mean by a "definite" rule, and we argue
that our logic should be intuitionistic,c rather than clas-
sical, since intuitionistic logic admits a larger class of
rules that have "definite" properties. Since our basic
language is intuitionistic, though, another novel aspect
of our work is that we then write the circumscription
axiom as a sentence in second-order intuitionistic logic.
Although we state some of the properties of intuitionis-
tic circumscription in Section 4, a more detailed discus-
sion will be presented in a forthcoming paper [McCarty,
1991].

2 Definite Rules

Horn clauses provide the standard examples of definite
rules, for a simple reason. Every set of positive Horn
clauses has a unique minimal Herbrand interpretation
[van Emden and Kowalski, 1976; Apt and van Emden,
1982], or, equivalently, an initial model [Goguen and Me-
seguer, 1986; Makowsky, 1985]. As a result, a set of pos-
itive Horn clauses, R, has both the disjunctive property
and the existential property: A disjunction of atomic for-
mulae, AV B, is entailed by R if and only if = or
R f= B, and an existentially quantified atomic formula,
(Ix)A(x}, is entailed by R ifand only if R = A(x)& for
some ground substitution &. Closely related is a proof-
theoretic property, the existence of linear proofs. Indeed,
it is fair to say that it is the procedural interpretation
of a declarative semantics, embodied in SLD-resolution
[Lloyd, 1987], that makes Horn-clause logic such a pow-
erful tool for logic programming, for deductive databases
and for knowledge representation in general.

It is well known that these useful properties are lost
if we move beyond the Horn-clause subset of first-order
(classical) logic. However, we can preserve these proper-
ties for a larger class of rules if we use first-order intu-
itionistic logic. Consider the following example:

SterileContainer(z) < (1)
Container{z) A
(Vy){Dead(y) < Bug(y) » Inside(y, z)]

This expression should be read: "If every bug y inside
container x is a dead bug, then x is a sterile container/'
Recall that a positive Horn clause is an implication with
an atomic conclusion and with an antecedent consisting
of a conjunction of atomic formulae. But rule (1) has a
Horn clause "embedded" in its antecedent. We call such
rules embedded implications [McCarty, 1988a; McCarty,
1988b]. Intuitionistic embedded implications have been
studied by several researchers [Gabbay and Reyle, 1984;

Gabbay, 1985; McCarty, 1988a; McCarty, 1988b; Miller,
1989: Hallnas and Schroeder-Heister, 1988; Bonner ct a/.,
1989J, and have been shown to be useful for hypothetical
reasoning [Bonner, 1988], for legal reasoning [McCarty,
1989], for modular logic programming [Miller, 1989]. and
for natural language understanding [Pareschi, 1988].

Note that a set of rules in the form (1), interpreted
classically, would give us full first-order logic. However,
interpreted intuitionistically, these rules give us a proper
subset of first-order lock with interesting semantic prop-
erties [McCarty, 1988a].' First, a set ofintuitionistic em-
bedded implications R has a final Kripke model, which
we denote by K*. This means: Given any Kripke model
K of R, there exists a unique homomorphismT from K
into K*. Second, K* is generic for Horn-clause queries.
This means: A Horn clause query % is entailed by R if
and only if is true in K*. Third, K* has a unique min-
imal substatc, denoted by MK*. Taken together, these
results imply that R has the disjunctive and existen-
tial properties for Horn clause queries, a straightforward
generalization of the fact that a set of (classical) positive
Horn clauses has the disjunctive and existential proper-
ties for atomic queries. For this reason, it is appropriate
to refer to rules in the form (1) as "definite" rules.

The proof theory for intuitionistic embedded implica-
tions is also a straightforward generalization of the proof
theory for classical Horn-clause logic [McCarty, 1988b].
Consider a rulebase consisting of (1) plus the following
two rules:

Dead{y) <= Bug{y) A Heated{y) (2)

Heated(y) <« Container{z) A Heated{x) A (3)
Inside(y,)

Assume a database of assertions: 'Container(p)' and
*Heated(p)', and consider the query: *(3z)SterileCon-
tainer{z}?’. Our proof procedure begins by construct-
ing an SLD-refutation tree in an initial tableau, To, and
proceeds until it has reduced the original query to the
goal: (Vy)[Dead(y) < Bug(y} A Inside(y, p)]- Note that
this goal is a universally quantified implication. At this
point, the proof procedure: (i) replaces the variable y
with a special constant 'lyy. and (ii) constructs an aux-
iliary tableau, T, with a goal 'Dead(!yi)' and a database
consisting of the assertions 'Bug(!y+)' and 'Inside(!yi,p)\
This goal succeeds, using rules (2) and (3), which means
that the universally quantified implication also succeeds.
Thus the overall proof succeeds, with a definite answer
substitution @: {p «— z}. For additional examples of
such proofs, see [McCarty, 1988b].

3 Indefinite Information

For common sense reasoning, definite rules by themselves
appear to be insufficient. Consider the following exam-
ple, discussed by Moore [1982]. There are three blocks:
Block(a), Block(b), Block(c); and two colors: Red and
Green. The blocks are stacked in the following way:
On(a,b), On(b,c); and the top and bottom blocks are

'"The standard semantics for intuitionistic logic is Kripke
semantics. See [Kripke, 1965; Fitting, 1969].

McCarty and van der Meyden 891

painted green and red, respectively: Green(a), Red(c).
We do not know the color of the middle block, but we
know that every block is painted either red or green:

Biock(z) => Red(2) V Green(z) (4)

We want to know if there is something green on some-
thing red, a situation that could be represented by the
following predicate:

GreenOuRed <= On(z, y) A Green(z) A Red(y) (5)

Intuitively, the answer should be: Yes. Either 'b'is a red
block, in which case 'a' and 'b' constitute a green-on-red
pair, or else 'b' is a green block, in which case 'b' and 'c'
constitute a green-on-red pair.

How should we represent indefinite information of this
sort? One approach is to add two new types of rules to
our language:

P(x) = Q.(x) V Qa(x) (6)
P(x) = 3y)Q(x:y) 7)

We call these rules disjunctive and existential assertions,
respectively. The addition of disjunctive and existential
assertions to a set of embedded implications is equiva-
lent to full first-order intuitionistic logic, of course, but
there are reasons to write a rulebase in this special form.
Although we no longer have the properties of definite
rules discussed in Section 2, it makes sense to stay as
close to these properties as possible. We thus show in
[McCarty, 1990] that a set of rules in the form (1), (6)
and (7) has a final Kripke model, I*, although I* does
not, in general, have a unique minimal substate. We also
investigate in [McCarty, 1990] an extension of the linear
proof procedure in [McCarty, 1988b] which uses a limited
"disjunctive splittiiig" operation whenever it encounters
a rule in the form (6), and we show that this proof pro-
cedure is complete for intuitionistic (but not classical)
logic. These results are related to recent work on dis-
junctive logic programming [Minker and Rajasekar, 1990;
Loveland, 1987; Loveland, 1988].

But do rules in the form (6) and (7) really capture
our common sense reasoning with indefinite information?
Suppose the following definition is part of the 'blocks
world":

Above(z,y) < On(z, y) (8)
Above(z,) <« On(z, z) A Above(z, ¢) (9)
and suppose we have been told that 'Above(a,b)' is true
according to this definition. Is there something on 'b'?
Intuitively, the answer should be: Yes. But it is standard

practice [Kowalski, 1979] to write the 'only if' half of
definition (8)~(9) as follows:

Above(x,y) => On(x, y) V (10)
(3z)[Qn(x, z) A Above(z, y)]

And using (10), the formal answer to our query is: No. It
is straightforward to verify that the final Kripke model
for rules (8)-(10) includes a substate that contains an
infinite sequence of 'Above' relations, and no relation in
the form 'On(w,b)\ For example:

Above(a, b),

On(a, cq), Above(cq,b),

892 Logic Programming

On(cl i c:),
Oﬂ(cg, (:3),

Above(cz, b),
Above(ca, b),

Moreover, there is no set offirst-order rules that gives us
the intuitively correct result in this case, since transitive
closure cannot be defined in first-order logic [Aho and
Ullman, 1979]. Is there an alternative?

4 Circumscription

In this section, we consider a radically different approach
to the representation of indefinite information. Assume
that there exists a set of definite rules that can be applied
to a world of definite facts. Assume also that someone
else has observed the world, applied the rules, and re-
ported some of these definite conclusions. Our job is to
make inferences about the actual state of the world, even
though we have not observed it directly. For example,
we might be told that block 'a' is above block 'b\ using
the definition of "Above' in rules (8)-(9), and we might
want to know whether there is something on 'b' The
world could be in infinitely many different states, with
infinitely many different configurations of 'On' facts, all
supporting the conclusion 'Above(a,b)' Our informa-
tion about the world is thus highly indefinite. Intu-
itively, however, we ought to be able to conclude that
*(3w)On(w,b) is true.

The formal machinery we need for this approach is
provided by McCarthy's theory of circumscription [Mc-
Carthy, 1980; McCarthy, 1986]. Since we are working
with intuitionistic logic, however, we need to use an in-
tuitionistic version of the circumscription axiom. Let
R be a finite set of embedded implications, and let P
= < Py, Py, ..., Pr > be a tuple consisting of the "de-
fined predicates" that appear on the left-hand sides of
the rules in R. Let R(P) denote the conjunction of the
rules in R, with the predicate symbols in P treated as
free parameters, and let R(X) be the same as R(P) but
with the predicate constants < Py, Pa,..., Px> replaced
by predicate variables < Xy, Xa,..., Xz >.

Definition 4.1: The circumscription axiom is the
following sentence in second order intuitionistic
logic:?

&
R(P) A (YX)R(X) A A (V) [Xi(x)= Pi(x)]
E=1
k
= A (¥x)[Pi(x)=> Xa(x)]]
i=1

We denote this expression by Ctrcum(R(P);P), and
we refer to it as "the circumscription of P in R(P)."

This axiom has the same intuitive meaning that it has in
classical logic: It states that the extensions of the predi-
cates in P are as small as possible, given the constraint

2We define second-order intuitionistic logic precisely in
[McCarty, 1990], following standard accounts such as [Troel-
stra and van Dalen, 1988].

that R(P) must be true. Since the logic is intuitionis-
tic, however, the axiom minimizes extensions at every
substate of every Kripke model that satisfies R.®

If R consists of rules (8)-(9), then the circumscription
of'Above' in R forces 'Above' to be the transitive closure
of'On' [McCarthy, 1980; Lifschitz, 1985], and this entails
the following implication:

(Fw)On(w, b) <= Above(a,b) (11)
We thus have a solution to the problem posed at the
beginning of this section.

How might we compute such inferences, in general?
We discuss this question in [McCarty, 1990], and we
summarize our results briefly here. Let us formulate the
general query problem as follows:

RU Circum(R(PiPYE ¢ (12)
where Q and R are embedded implications, and 4 is an
implication in the form (11) with a positive disjunctive
or existential conclusion and an antecedent consisting of
a conjunction of atomic formulae. Our approach is to
construct a final Kripke model for @) Circam(R(P);P)
under various assumptions about Q and R, and then
to show that this final Kripke model is generic for the
query . In the present paper, we will only consider the
case in which R is a set of Horn clauses, but we will
analyze the general case of embedded implications in a
forthcoming paper [McCarty, 1991]. For Horn clauses,
the construction of the final Kripke model is simple, and
is related to recent results of Kolaitis and Papamitriou
[1990]. First, let K* be the final Kripke model for R
itself, as defined in Section 2. Now let B be the set of
base predicates in R, that is, the predicates that do not
appear in P, and let b be the Herbrand base constructed
using B alone. Define:

C* = {NK*(s) | s € 2P}

where K*(s) denotes the set of substates s’ in K* such
that 8" > s. Intuitively, C* consists of the set of least
fixpoints of the Horn clauses in ft applied to all possible
combinations of ground atomic formulae that are con-
structible using the predicates in B. We then have the
following result:

Theorem 4.2: Let R be a set of Horn clauses, and
let Q be a set of embedded implications. Let C be
the largest subset of C* that satisfies Q. Then C is
a final Kripke model for @ U Circum(7t(P);P).

Since we can also show that final Kripke models are
generic for queries in the form t, we can solve the query
problem (12) by showing that # is true in C.

In the remainder of this paper, we will investigate
two ways to do this using certain additional assump-
tions about the form of Q and R. As an illustration of
our techniques, we will work with a single example that
combines the two examples in Section 3. Let R be the
following set of rules:

ChristmasBlock (z) < Block(z) A Red(z) (13)

®Note that we have written the circumscription axiom as
a second-order universally-quantified embedded implication.
Alternative versions, using negation and second-order exis-
tential quantification, which are equivalent in classical logic,
would not be equivalent intuitionistically.

ChristmasBlock(z} <= Block(z} A Green{z) (14)

OuCB(z, y) < ChristmasBlock(z) A (15)
ChristmasBlock(y) A Oni(z, y)

AboveCB(z,y) « OnCB(z, y) (16)

AboveCB(z, y) < OnCB(z, z) A AboveCB(z,y) (17)

Intuitively, rules (13)-(14) define the concept of a
'ChristmasBlock’, and rules (15)-(17) define the concept
of a stack of 'ChristmasBlocks'. Suppose we are told
that there exists a stack of 'ChristmasBlocks' in which
block 'a' is above block 'b' and furthermore that 'a’
and 'b' are painted green and red, respectively. Does it
follow that there is something green on something red?
Intuitively, the answer should be: Yes. Formally, we
can pose this question by circumscribing the predicates
'ChristmasBlock," 'OnCB' and 'AboveCB' in rules (13)-
(17), adding rule (5) to Q, and then asking whether the
following implication is entailed:

GreenOnRed < AboveCB(a,b) A (18)
Green(a) A Red(b)

We will show how to solve this problem in the following
two sections of the paper, using two different methods.

5 Prototypical Proofs

In this section, we consider a class of inductive proofs in
which the induction schema takes the form of an intu-
itionistic embedded implication. We can think of these
proofs as having two parts: The first part is a proto-
typical proof, and it is guaranteed to exist whenever the
query ¥ is entailed by £ Circum(R(P);P). The second
part involves the proof of an embedded implication with
an embedded second-order universal quantifier, and it is
conjectured to exist whenever the prototypical proof suc-
ceeds. Although second-order intuitionistic logic is in-
complete, in general, the fragment of second-order logic
that we use to state the induction schema happens to
have a complete proof procedure. This means that it
is possible to automate the search for a solution to our
sample problem, and to certain other similar problems.

First, note that rules (13)-(15) in our sample prob-
lem are nonrecursive Horn clauses. For such rules, the
solution is the same in intuitionistic logic as it is in clas-
sical logic [Reiter, 1982; Lifschitz, 1985]. Let Comp(7t)
denote Clark's Predicate Completion [Clark, 1978]. We
then have the following result, which is proven in [Mc-
Carty, 19901]:

Theorem 5.1:
clauses. Then
Comp(R).

The remaining rules in our sample problem have a
simple form, suggesting the following:

Definition 5.2: R is a linear recursive definition of
the predicate A if it consists of:
1. A Horn clause with 'A(X)' on the left-hand side
and a conjunction of nonrecursive predicates on
the right-hand side, and

Let R be a set of nonrecursive Horn
Circum(R(P);P) is equivalent to

2. A Horn clause that is linear recursive in A,

McCarty and van der Meyden 893

Let “A(x)=>A4°(x)" be the rule obtained from (1)
by applying Clark’s Predicate Completion. We say
that “A(x)=>A%(x)" is the prototlypical definition of
A(x).

Let "X (x)=>AX(x) be the rule obtained from (2}
by applying Clark’s Predicate Completion and then
replacing the predicate constant A with the predi-
cate variable X. We say that ‘X {x)=>A X {x)’ is the
tranaformation associated with A4(x). D

In particular, rules {16)~(17) constitute a linear recur-
sive definition of the predicate *AboveCB’, in which

AboveCB(z,) = OnCB(z,) (19)
ia the prototypical definition, and
X(z,y) = (32}[OuCB{z,z) A X(z,¥)} (20)

is the transformation. Although (20) is written as an
implication, it should be viewed, quite literally, as an
operation that transforins any relation between z and y
that matches ita left-hand side into a relation between z
and y that matches its right-hand side. Comparing the
compotents of Definition 5.2 with (19} and (20), we now
extract ‘AboveCB’(z, y)* and ‘A X (z, ¥)’ from (18} and
(20), and we use themn to define the induction schema
that we need to solve our probleni.

Let ${A) be any Horn clause in which the predicate
constant A appears on the right-hand side. For example:

I
®(A) = (Vx) [P(x) < A(x) A /\B.-(x'}}
i=1
We will treat ${A) as a schemna that depends on A, so
that we are free to substitute 4%, AX and X as we
wish. Thinking about (20) as a transformation sug-
gests:

Definition 5.3: The induction schema for ${A4) is
the following sentence in second-order intuitionistic
logic:

$(A) < B(AY) A (VX)[P(AX) « &(X)]

The interesting point about this induction schema is
that it takes the form of an embedded implication with
an embedded second-order universal quantifier. Second-
order intuitionistic logic has no complete proof proce-
dure, of course, but it turns out that a set of second-order
rules in this form does have a complete proof procedure.
The proof procedure is actually very simple, and it can
be understood by analogy to the first-order intuitionis-
tic proof procedure described in Section 2. Recall how
we handled a goal with a first-order universal quanti-
fier, (Vy). We simply created a special constant ‘ly,’
and showed that the implication eucceeded when y was
replaced by ‘ly;’. Similarly, when we encounter a goal
with a second-order universal quantifier, (VX), we sim-
ply create a special predicate constant ‘{X,” and we try
to show that the implication succeeds when X is replaced
by *I1X;'. For a proof that this procedure is complete, see
[McCarty, 1990].

Let us now see how the induction schema in Defini-
tion 5.3 can be applied to solve our sample problem.
Since we are trying to prove the implication in (18}, we
construct an initial tablean, T, with *AboveCDB(a,b)’,

894 Logic Programming

'Green(a)’ and 'Red(b)' in its data base, and with
'GreenOnRed' as its goal. Our first step is to show, if
possible, that this proof succeeds using the prototyp-
ical definition in (19). However, the reader can eas-
ily verify that there exists an SLD-refutation proof of
'GreenOnRed' in this tableau using rules (5) and (19),
and using Comp(R) applied to rule (15). Moreover, from
an inspection of this proof, it is apparent that there also
exists a proof of the following universally quantified im-
plication:

(Vz)[GreenOnRed < OnCB(z,b) A (21)
Green{z) A Red(b)]

Let us call this implication &®(AboveCB°). Then
®{AboveCB) is the following universally quantified im-
plication:

(Vz)(GreenOnRed <= AboveCB(z,b) A (22)
Green(z) A Red(b)]

and if we can prove (22) we will also have a proof of
our original query (18). Therefore, using the induction
schema in Definition 5.3, we try to prove (YX}E(AX) <
®{X)]. This goal is an implication with a second-order
universal quantifier, so we create a new tableau, T,
we add ¢(1X,) to the data base, and we try to prove
P(AX,) in T,

Let us write out each of these schemata in detail,
$(1X,) is the following implication:

(¥z)[GreenOnRed <= 'X(z,b} A (23)
Green(z) A Red(b)]
AN(yz, z)|GreenOnRed < OnCB(z, z) A [X1(z, b) A (24)
Green(z) A Red(b}]

To prove (24), we instantiate x and z to the special con-
stants ‘Ix;' and *!z;°, we add the right-hand side of (24)
to the data base of T4, and we try to prove the left-hand
side of (24). The remaining details are somewhat te-
dious, but the reader should be able to check that this
proof does in fact go through. The main point to note is
that the proof now uses Comp(R) applied to rules (13)
and (14), which yields a disjunctive assertion. We thus
need to apply the "disjunctive splitting" operation dis-
cussed in Section 3. When this final step succeeds, how-
ever, the inductive proof itself succeeds, and the query
is shown to be true.

The justification for our approach can be found in the
following two theorems, which are proven in [McCarty,
1990] using our results on final Kripke models. In the
statement of these theorems, S(A) denotes the set of
all induction schemata for A that can be constructed
using Definition 5.3, and V(A) denotes the prototypical
definition of A given by Definition 5.2. Both theorems
apply to the situation in which R is a linear recursive
definition, Q is a set of embedded implications, and ¢ is
an implication with a positive disjunctive or existential
conclusion and an antecedent consisting of a conjunction
of atomic formulae.

Theorem 5.4:
QURUS(A) = ¢ = QU Circum(R(A); A) k= ¢

Theorem 5.5:

QURUP(A) E ¢ «= QU Circum(R(A); A) = ¥

Theorem 5.4 tells us that inductive proofs are sound
but not necessarily complete, while Theorem 5.5 tells us
that prototypical proofs are complete but not necessarily
sound. Together, these theorems sanction the strategy
we illustrated in our example: Try to find a prototypical
proof first, and then use this proof to suggest a suitable
induction schema.

Our sample problem is still relatively simple, but we
have constructed proofs of this sort for more difficult
problems. In particular, we have applied our tech-
niques to prove various properties of PROLOG pro-
grams [Kanamori and Fujita, 1986; Elkan and McAllest-
er, 1988]. For example, let 'Append(l,m,n)"' be defined
as usual. Let 'Reverse(r,*)' be defined as follows:

Reverse(nil, nil)
Reverse([q | 7], p) <= Reverse(r, s) A Append(s, [¢], p)

We can then show that ‘(¥a&){(¥y) [Reverse(x,y) < Re-
ver8e(y,x)]' is entailed by the circumscription of 'Ap-
pend' and 'Reverse' in this rulebase. For the details of
this proof, see [McCarty, 1990].

6 A Decision Procedure

We have shown in Theorem 5.4 that a certain class of in-
duction schemata provides a sound inference procedure
for circumscribed definite rules. Furthermore, the struc-
ture of these schemata allows us to use a complete proof
theory for second-order embedded implications in the in-
ductive step of the proof. This raises the question: Is the
resulting proof theory for the circumscribed rulebase it-
self complete? We show in this section that it is not. In
fact there can be no such proof theory, since the query
problem will be shown to be not even semi-decidable.
Nevertheless, we will demonstrate that one can still find
interesting classes of decidable queries. Our results are
significant since they show that, even in cases where the
circumscription of a theory is not first-order equivalent,
it is possible to decide certain broad classes of queries.
We refer the reader to [van der Meyden, 1990] for proofs
of the results in this section.

For the remainder of this section we restrict our atten-
tion to rules R which contain only positive Horn clauses
without function symbols, i.e., all programs are DAT-
ALOG programs [Chandra and Harel, 1982]. Further-
more, we require that there be no repeated variables in
the heads of rules.* We consider the following restricted
formulation of the query problem:

DU Circem(R{(P);P) = ¢ (25)

where D is a set of ground base and defined atoms, and
¢ is a closed positive existential formula in the base and
defined predicates, i.e., a formula constructed using only
the operators A,V and 3. The proof of the following
result is by an encoding of the containment problem for
context-free languages:

*This last restriction is made to simplify the presentation
only; our results still hold if it is removed.

Theorem 6.1; For arbitrary DATALOG rules R,
sets of ground atoms D and positive existential
queries ¢, the problem DU Circum(7I(P);P) = ¢
is undecidable.

We will now show that the complement of the query
problem is recursively enumerable. Define an expansion

of a defined atom A(x) by R to be any set E(x) of base
atoms such that either

1. E = {B{(x;b),...,Bn(x;b)} for some tuple b of
new constants, and for some rule

A(x) <= A Bi(x;y)

i=1
in R such that all the B; are base predicates, or
2. E = {Bi(x;b),..., Ba(x;b)} UU;:;1 E;(x;b) for
some tuple b of new constants, and for some rule

A(x) <= A Bisy) A A A(xiy)

=1 i=1

in R such that all the B; are base predicates, all the
A; are defined predicates, and each Ejx;y) is an
expansion of Ajx; y) by R.

Also, if a is a tuple of constants, then we say that E(a)
is an expansion of A (a) by R if E(x) is an expansion
of A(x) by R. We write Expandg(A) for the set of
expansions of A by R.. If D is a set of ground atoms in
both base and defined predicates, then an expansion of
D by R is any set of ground atoms obtained from D by
replacing each defined atom A € D by an expansion of
A by R

For example, let R consist of the rules (13)-(17). Then
the set:

e {Block{a), Green(a), On(a, b), Block(b), Red(b)}
is an expansion of ‘AboveCB(a, b)’, and the set:

» {Green(a), Block(a), Red{a), On{a, c), Block(c),
Red(c), On{c, b}, Block(b}, Red(b}}

is an expansion of D = {Green(a), AboveCB(a, b),
Red(b)}.

The following proposition shows that we may restrict
attention to a denumerable set of models of a particular

form when answering queries:

Lemma 6.2: DU Circum(R(P);P) | ¢ if and only
if M = ¢ for all expansions M of D by R.

Lemma 6.2 shows that the problem of deciding that
a query is not entailed is semi-decidable, since it suf-
fices to find a single expansion of D in which the
query fails. It follows from this and Theorem 6.1 that
{{D,R, ¢}|D U Circum(R(P);P) = ¢} is not a recur-
sively enumerable set. Thus the techniques of Sec-
tion 5 can only provide sufficient conditions for answer-
ing queries.

In spite of these undecidability results, there exist
broad classes of queries for which the query problem can
be shown to be decidable, even in cases when the circum-
scription of R is not equivalent to a first-order theory.
Define a query to be basic if it contains occurrences of
base predicates only.

McCarty and van der Meyden 895

Theorem 6.3: For arbitrary DATALOG rules R,
peta of ground atoms D and basic queries ¢, the
problem D U Circum(R(P); P} | ¢ is decidable.

The decision procedure involves a sort of “finite model
property”. If ¢ is a basic query, let the equivalence
relation =4 be defined on the expansions of a defined
atom A(x) as follows: E;(x) =4 FEi(x) when for all
sets D of ground base atoms and for all constante a,
DU E((a) |= ¢ if and ouly if DU Ey(a) | ¢. Intuitively,
this relation holds just when the expansion E; makes
the same “contribution” to the satisfaction of ¢ as the
expansion Ea. For basic queries ¢, it can be shown that
the relation =4 has a finite number of equivalence classes
and that Ej(x) =4 E;(x) is decidable. Let Repa(R, 4)
be & set of representatives of the equivalence classes of
the expansions in Ezpand(R, A), i.e., for each expansion
E ¢ Ezpand(R, A) there exists B € Repy(R, A) such
that E =4 E’. Then one can show the following:

Lemma 68.4: DU Circum(R(P);P) E ¢ if and only
if M | ¢ for all expansions M of D constructed by
replacing each defined atom 4 € D by some expan-
sion from Repy(R, 4).

A (naive) decision procedure for answering basic
queries thus works as follows:

1. For each defined predicate A, compute Repy(R, A).

2. Verify that all expangions of D using these repre-
sentatives satisfy ¢.

This simple procedure does not have optimal complexity,
however, and we refer the reader to [van der Meyden,
1990) for a detailed analysis of the complexity of this
problem.

Returning to our “stack of Christmas blocks” example,
let R consist of the rules (13)-(17), aud let ¢ be:

(3z){(3y)[On(=z, y) A Green(z) A Red(y}]
It can be shown that Reps(R., AboveCB(z, y)) is & subset

of the set of expansions of “depth” less than or equal to
two. That is, all these expansions are of the form:

1. {Block(z), C1{z), On{z, y), Block{y), Ca(p)} or

2. {Block(z), Ci(z), On(=, z), Block(z}, C2(z), Ca(z),
On(z,y), Block(y), Cu(1)}

where the predicates C; are either ‘Red’ or ‘Green’.
In [van der Meyden, 1990], it is shown that there are
additional classes of decidable queries:

Theorem 6.5: Let R be a rulebase that includes
only monadic defined predicates P (but which may
include base predicates of arbitrary arity). Then
DU Cireum{R(P);P) E ¢ is decidable for sets of
atoms D and queries ¢ containing the defined pred-
icates P as well as the base predicates.

Define a rulebase R with just one defined predicate P to
be singular if there exiats an index i such that each rule
P(z,...z,} < B has all occurrences of P in the body B
of the form P{z,...2;_1,¥, Zi41...Z,) for some variable
y. For example, the rules (8) and (9) defining the relation
‘Above’ copstitute a singular rulebase.
Theorem 6.8: If R iz a singular rulebase defining
the predicate P, then DU Circum(R(P P = ¢ is

896 Logic Programming

decidable for sets of atoms D and queries ¢ contain-
ing the predicate P as well as the base predicates.

These results are all consequences of a theorem of
Courcelle [1990] concerning graph grammars. In gen-
eral, we retain decidability when we permit in the query
any predicate to which the rulebase gives a definition ex-
pressible in monadic second-order logic. Unfortunately,
it can be shown to be undecidable whether a rulebase
defines a predicate expressible in monadic second-order
logic, so we must be content with enumerating special
cases, as above, if we wish to go beyond the class of
basic queries.

7 Conclusion

We have presented two approaches to answering queries
in the presence of indefinite information, both of which
are able to handle the "stack of Christmas blocks" ex-
ample. The reader may have wondered why, since the
method of Section 6 is a decision procedure, one would
bother with the prototypical proofs of Section 5?7 The
reason is that the the decision procedure works for a
smaller class of rules than the prototypical proofs. On
the other hand, the price paid by the prototypical proofs
for their ability to deal with a potentially larger set of
examples is logical incompleteness. It would be interest-
ing to determine the extent to which this incompleteness
corresponds to the incompleteness of human reasoning
when faced with indefinite information of comparable
logical complexity.

References

Clausal intuitionistic
Journal of Logic Pro-

[McCarty, 1988a] L.T. McCarty.
logic. |. Fixed-point semantics.
gramming, 5(1):1-31, 1988.

[McCarty, 1988b] L.T. McCarty. Clausal intuitionistic
logic. Il. Tableau proof procedures. Journal of Logic
Programming, 5(2):93-132, 1988.

[McCarty, 1990] L.T. McCarty. Computing with proto-
types. Technical Report LRP-TR-22, Computer Sci-
ence Department, Rutgers University, 1990. A pre-
liminary version of this paper was presented at the
Bar Ran Symposium on the Foundations of Artificial
Intelligence, Ramat Gan, lIsrael, June 1989.

[McCarty, 1991] L.T. McCarty. Circumscribing embed-
ded implications. In A. Nerode et al., editors, Proceed-
ings, First International Workshop on Logic Program-
ming and Non-Monotonic Reasoning, page (forthcom-
ing). MIT Press, 1991.

[van der Meyden, 1990] R. van der Meyden. Recur-
sively indefinite databases. In S. Abiteboul and P.C.
Kanellakis, editors, Proceedings of the Third Interna-
tional Conference on Database Theory, pages 364-378.
Springer LNCS No. 470, 1990.

Note: These references are truncated because of space
limitations. A full list of references is available from the
authors on request.

