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A b s t r a c t 

In th is paper we present a novel e x p l a n a t i o n 
o f the source o f i nde f in i te i n f o r m a t i o n in com­
m o n sense reason ing: I nde f i n i t e i n f o r m a t i o n 
arises f r o m repor ts a b o u t the w o r l d expressed 
in te rms of concepts t h a t have been def ined us­
i n g on l y de f in i te ru les. A d o p t i n g th i s p o i n t o f 
v i ew , we show t h a t f i rs t -order logic is insuf f i ­
c ien t l y expressive to hand le i m p o r t a n t exam­
ples of c o m m o n sense reason ing. As a r e m ­
edy, we propose the use of c i r cumscr ibed def­
i n i t e ru les, a n d we then invest iga te the p r o o f 
t heo ry o f th i s more expressive f r a m e w o r k . We 
consider t w o approaches: F i r s t , prototypical 
proofs, a specia l t ype of p r o o f by i n d u c t i o n , 
w h i c h y ie lds a sound p r o o f theory . Second, we 
describe cases in wh i ch there exists a decision 
procedure for answer ing queries, a p a r t i c u l a r l y 
s ign i f i cant resul t because i t shows t h a t i t is pos­
sible to have dec idable query processing in c i r ­
cumscr ibed theor ies t h a t are n o t equ iva lent to 
any f i rs t order theory . 

1 I n t r o d u c t i o n 
C o m m o n sense reason ing has a bias towards definite 
information, as m a n y researchers have no ted . T h u s 
J o h n s o n - L a i r d [1983] has argued t h a t h u m a n beings 
d raw inferences i n p a r t i c u l a r " m e n t a l mode ls ' ' , and 
Levesque [1986] has u rged , for s im i l a r reasons, the s t udy 
o f " v i v i d knowledge ' ' i n a r t i f i c i a l in te l l igence. T h i s bias 
towards de f in i te i n f o r m a t i o n has also permeated c o m ­
pu te r science p roper . T h e f ie ld o f logic p r o g r a m m i n g , for 
examp le , is based on a subset of f i r s t -o rder logic consist­
i ng en t i re l y o f de f in i te clauses. I ndeed , M a k o w s k y [1985] 
has a rgued t h a t " H o r n f o rmu las m a t t e r " i n compu te r 
science precisely because they have a un ique m i n i m a l 
m o d e l . 

I f t h i s is so, t hen h o w does indefinite information arise 
in c o m m o n sense reasoning? In th is paper , we adop t a 
novel p o i n t o f v iew on th is ques t ion , a n d explore the con­
sequences. We suggest (as a Gedanken expe r imen t ) t h a t 
c o m m o n sense reason ing is based exc lus ive ly on definite 
rules, a n d t h a t i nde f i n i t e i n f o r m a t i o n arises f r o m the ap­
p l i c a t i o n o f these de f in i te rules to de f in i te facts in s i tua ­

t ions where c o m m u n i c a t i o n is a lmos t a lways incomp le te . 
An i n d i v i d u a l w h o receives repor ts a b o u t the w o r l d does 
n o t usua l l y k n o w the de f in i te facts u p o n w h i c h these re­
po r t s are based, a n d for such an i n d i v i d u a l the w o r l d is 
a ( chao t i ca l l y ! ) i nde f in i te p lace. O u t o f necessity, an i n ­
d i v i d u a l i n t h i s s i t u a t i o n does inde f in i te reasoning w i t h 
de f in i te rules. 

I f we a d o p t th is p o i n t o f v iew, however , i t t u rns ou t 
t h a t the s t a n d a r d way o f represent ing inde f in i te in for ­
m a t i o n in a r t i f i c i a l in te l l igence - i.e., by a f i rst-order 
language capable o f asser t ing d i s j unc t i ve and ex is ten­
t i a l facts - is i nadequa te . We show in Sect ion 3 t h a t 
f i rs t -order log ic canno t express a s imp le f o r m of i n ­
def in i te i n f o r m a t i o n t h a t seems essential for c o m m o n 
sense reasoning. I ns tead , we suggest in Sect ion 4 t h a t 
an adequate represen ta t ion o f i nde f in i te i n f o r m a t i o n 
requires the use of circumscription [ M c C a r t h y , 1980; 
M c C a r t h y , 1986]. B u t c i r c u m s c r i p t i o n is a second-order 
f o r m a l i s m . Is i t p laus ib le to propose such a comp lex 
log ica l language fo r such a m u n d a n e purpose as com­
m o n sense reasoning? We bel ieve the answer is: Yes. 
T h e p r i n c i p a l techn ica l c o n t r i b u t i o n o f the present pa-
per, in Sections 5 and 6, is to suggest two new tech­
niques for c o m p u t i n g the inferences t h a t f o l l ow f r o m a 
c i r cumscr ibed de f in i te ru lebase. These techniques app l y 
in special cases, o f course, b u t they seem p r o m i s i n g for 
var ious p rac t i ca l app l i ca t i ons . 

In Sect ion 5, we develop the n o t i o n of a prototypi­
cal proof, w h i c h is a specia l t ype of i n d u c t i v e proof . I f 
a query is en ta i led by a c i r cumsc r ibed rulebase, then 
a p r o t o t y p i c a l p r o o f is guaran teed to ex is t , and i f a 
p r o t o t y p i c a l p r o o f succeeds, t hen an i n d u c t i o n schema 
can be a u t o m a t i c a l l y generated. F u r t h e r m o r e , an i n ­
d u c t i o n schema in our sys tem has very s imp le and ap­
pea l i ng p roo f - theore t i c p roper t ies . T h i s means t h a t we 
can search sys tema t i ca l l y fo r i n d u c t i v e p roo fs , a t least 
in ce r ta in specia l cases t h a t seem to be o f considerable 
p r a c t i c a l i m p o r t a n c e . These techniques canno t give us 
a comp le te p r o o f p rocedure , o f course. B u t in Sect ion 6 , 
we show t h a t an ac tua l decision procedure exists for cer­
t a i n o ther special cases t h a t seem to be o f p rac t i ca l i m ­
po r tance . Prev ious w o r k on c i r c u m s c r i p t i o n has t r i ed to 
f ind cond i t i ons under w h i c h a c i r cumsc r i bed theory " co l ­
lapses" to a f i rst-order t heo ry [L i f sch i t z , 1985], so t h a t 
s t a n d a r d theorem-provers fo r f i r s t -o rder log ic cou ld then 
be app l i ed . However , these cond i t i ons are ex t reme ly re-
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s t r i c t i ve , and recent w o r k b y K o l a i t i s a n d P a p a d i m i t r i o u 
[1990] has shown t h a t the existence o f an equ iva lent f i rs t -
order t heo ry is i t se l f an undec idab le p rope r t y . O u r re­
sul ts in Sect ion 6 i m p r o v e u p o n th i s prev ious w o r k in 
two ways : ( i ) we show t h a t comp le te query -answer ing is 
possible even for theor ies whose c i r c u m s c r i p t i o n is n o t 
f i rs t -order ; a n d ( i i ) we p r o v i d e a f u l l decis ion procedure 
in such cases ra the r t h a n a semi-dec idab le p r o o f theory . 

T h e overa l l f r a m e w o r k i n w h i c h we have conduc ted 
th is research is presented in Sect ion 2, w h i c h is based on 
p rev ious ly pub l i shed w o r k [ M c C a r t y , 1988a; M c C a r t y , 
1988b; Bonner et al., 1989]. In Sect ion 2, we def ine pre­
cisely w h a t we m e a n by a " d e f i n i t e " ru le , a n d we argue 
t h a t our log ic shou ld be intuitionistic, ra ther t h a n clas-
s ica l , since i n t u i t i o n i s t i c log ic a d m i t s a larger class of 
rules t h a t have " d e f i n i t e " p roper t ies . Since our basic 
language is i n t u i t i o n i s t i c , t h o u g h , ano ther novel aspect 
o f our w o r k i s t h a t we t h e n w r i t e the c i r c u m s c r i p t i o n 
a x i o m as a sentence in second-order intuitionistic logic. 
A l t h o u g h we s ta te some o f the proper t ies o f i n t u i t i o n i s ­
t ic c i r c u m s c r i p t i o n in Sect ion 4, a more de ta i led discus­
sion w i l l be presented in a f o r t h c o m i n g paper [ M c C a r t y , 
1991]. 

2 De f in i t e Rules 
H o r n clauses p rov i de the s t a n d a r d examples o f def in i te 
rules, fo r a s imp le reason. Eve ry set of pos i t i ve H o r n 
clauses has a u n i q u e m i n i m a l H e r b r a n d i n t e r p r e t a t i o n 
[van E m d e n a n d K o w a l s k i , 1976; A p t a n d van E m d e n , 
1982], or , equ iva len t l y , an initial model [Goguen a n d M e -
seguer, 1986; M a k o w s k y , 1985]. As a resu l t , a set of pos­
i t i ve H o r n clauses, R , has b o t h the disjunctive property 
and the existential property: A d i s j u n c t i o n of a t o m i c for­
mu lae , i s en ta i led by R i f a n d on l y i f R o r 
R B , a n d an ex i s ten t ia l l y quan t i f i ed a t o m i c f o r m u l a , 

i s en ta i led by R i f and o n l y i f for 
some g r o u n d s u b s t i t u t i o n Closely re la ted is a proof -
theoret ic p rope r t y , the existence of linear proofs. I ndeed , 
i t is f a i r to say t h a t i t is t he procedural interpretation 
of a dec la ra t i ve semant ics , embod ied in SLD- reso lu t i on 
[ L l o y d , 1987], t h a t makes Horn-c lause logic such a pow­
er fu l t o o l fo r log ic p r o g r a m m i n g , for deduc t i ve databases 
and for know ledge represen ta t ion in genera l . 

I t i s we l l k n o w n t h a t these useful p roper t ies are lost 
i f we move b e y o n d the Horn-c lause subset o f f i rs t -o rder 
(classical) log ic . However , we can preserve these proper ­
ties fo r a larger class of rules if we use first-order intu­
itionistic logic. Cons ider the f o l l o w i n g examp le : 

(1) 

T h i s expression shou ld be read : " I f every b u g y ins ide 
conta iner x is a dead b u g , t h e n x is a ster i le con ta ine r / ' 
Reca l l t h a t a pos i t i ve H o r n clause is an i m p l i c a t i o n w i t h 
an a t o m i c conc lus ion a n d w i t h an antecedent cons is t ing 
of a c o n j u n c t i o n of a t o m i c f o rmu lae . B u t ru le (1) has a 
H o r n clause " e m b e d d e d " in i t s antecedent . We ca l l such 
rules embedded implications [ M c C a r t y , 1988a; M c C a r t y , 
1988b] . I n t u i t i o n i s t i c embedded i m p l i c a t i o n s have been 
s tud ied by several researchers [Gabbay a n d Rey le , 1984; 

Gabbay , 1985; M c C a r t y , 1988a; M c C a r t y , 1988b; M i l l e r , 
1989: Ha l l nas and Schroeder-Heis ter , 1988; Bonner ct a/., 
1989J, a n d have been shown to be usefu l fo r h y p o t h e t i c a l 
reasoning [Bonner , 1988], for legal reasoning [ M c C a r t y , 
1989], for m o d u l a r log ic p r o g r a m m i n g [M i l l e r , 1989]. a n d 
for n a t u r a l language unde rs tand ing [Pareschi , 1988]. 

No te t h a t a set o f ru les in the f o r m (1 ) , i n te rp re ted 
classical ly, w o u l d g ive us f u l l f i r s t -o rder log ic . However , 
i n te rp re ted i n t u i t i o n i s t i c a l l y , these rules g ive us a proper 
subset o f f i rs t -o rder l o c k w i t h i n te res t ing semant ic p r o p -
ert ies [ M c C a r t y , 1988a] .1 F i r s t , a set of i n t u i t i o n i s t i c em­
bedded i m p l i c a t i o n s R has a final Kripke model, w h i c h 
we denote by K * . T h i s means: G i v e n any K r i p k e m o d e l 
K of R, there exists a un ique h o m o m o r p h i s m f r o m K 
i n t o K * . Second, K* i s generic for Horn-c lause queries. 
T h i s means: A H o r n clause query is en ta i led by R i f 
and on l y i f i s t r ue in K * . T h i r d , K* has a unique min­
imal substatc, denoted by . T a k e n together , these 
resul ts i m p l y t h a t R has the d i s j unc t i ve a n d existen­
t i a l p roper t ies for H o r n clause quer ies, a s t r a i g h t f o r w a r d 
genera l i za t ion of the fac t t h a t a set of (c lassical) pos i t ive 
H o r n clauses has the d i s j unc t i ve a n d ex i s ten t ia l proper­
ties fo r a t o m i c queries. For t h i s reason, i t is app rop r i a te 
to refer to rules in the f o r m (1) as " d e f i n i t e " rules. 

T h e p r o o f theory for i n t u i t i o n i s t i c embedded imp l i ca ­
t ions is also a s t r a i g h t f o r w a r d genera l i za t ion of the p roo f 
theory for classical Horn-c lause logic [ M c C a r t y , 1988b]. 
Consider a rulebase cons is t ing of (1) p lus the f o l l ow ing 
two ru les: 

(2) 

(3) 

Assume a database o f assert ions: ' C o n t a i n e r ( p ) ' and 
* Heated ( p ) ' , a n d consider the que ry : S te r i l eCon-
ta iner O u r p r o o f p rocedure begins by cons t ruc t ­
i ng an S L D - r e f u t a t i o n tree in an initial tableau, To, and 
proceeds u n t i l i t has reduced the o r i g i n a l query to the 
goa l : No te t h a t 
th is goal i s a un ive rsa l l y quan t i f i ed i m p l i c a t i o n . At th is 
p o i n t , the p r o o f p rocedure : ( i ) replaces the var iab le y 
w i t h a special cons tan t ' !y1 ' a n d ( i i ) cons t ruc ts an aux­
iliary tableau, T1, w i t h a goal ' D e a d ( ! y i ) ' and a database 
cons is t ing o f the assert ions ' B u g ( ! y 1 ) ' a n d ' I n s i d e ( ! y i , p ) \ 
T h i s goa l succeeds, us ing rules (2) a n d (3 ) , w h i c h means 
t h a t the un ive rsa l l y q u a n t i f i e d i m p l i c a t i o n also succeeds. 
T h u s the overa l l p r o o f succeeds, w i t h a de f in i te answer 
s u b s t i t u t i o n For a d d i t i o n a l examples o f 
such proofs , see [ M c C a r t y , 1988b]. 

3 Inde f i n i t e I n f o r m a t i o n 
For c o m m o n sense reason ing, de f in i te rules by themselves 
appear to be insuf f ic ient . Cons ider the f o l l o w i n g exam­
p le , discussed by M o o r e [1982]. The re are three b locks: 
B l o c k ( a ) , B l o c k ( b ) , B l o c k ( c ) ; a n d t w o colors: Red and 
Green . T h e b locks are stacked in the f o l l o w i n g way: 
O n ( a , b ) , O n ( b , c ) ; a n d the t o p a n d b o t t o m b locks are 

1 The standard semantics for in tu i t ion is t ic logic is Kr ipke 
semantics. See [Kr ipke, 1965; F i t t i ng , 1969]. 
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pa in ted green a n d r e d , respect ive ly : Green(a ) , Red(c ) . 
We do no t k n o w the co lor o f the m i d d l e b lock , b u t we 
know t h a t every b lock is p a i n t e d e i ther red or green: 

(4) 
We w a n t to k n o w i f there i s s o m e t h i n g green on some­
t h i n g red , a s i t u a t i o n t h a t c o u l d be represented by the 
f o l l o w i n g p red ica te : 

(5) 

I n t u i t i v e l y , the answer shou ld be: Yes. E i t h e r ' b ' is a red 
b lock , in w h i c h case ' a ' a n d ' b ' cons t i t u t e a green-on-red 
pa i r , or else ' b ' is a green b lock , in w h i c h case ' b ' a n d ' c ' 
cons t i t u te a green-on-red pa i r . 

How shou ld we represent i nde f i n i t e i n f o r m a t i o n o f th i s 
sort? One approach is to a d d t w o new types o f rules to 
our language: 

(6) 
(7) 

We ca l l these rules disjunctive a n d existential assertions, 
respect ive ly . T h e a d d i t i o n o f d i s junc t i ve and ex is ten t ia l 
assert ions to a set of embedded i m p l i c a t i o n s is equ iva­
lent to f u l l f i r s t -o rder i n t u i t i o n i s t i c log ic , o f course, b u t 
there are reasons to w r i t e a rulebase in th is special f o r m . 
A l t h o u g h we no longer have the p roper t ies o f de f in i te 
rules discussed in Sect ion 2, i t makes sense to stay as 
close to these p roper t ies as possib le. We thus show in 
[ M c C a r t y , 1990] t h a t a set o f rules in the f o r m (1 ) , (6) 
and (7) has a f i na l K r i p k e m o d e l , I * , a l t h o u g h I * does 
n o t , in genera l , have a un ique m i n i m a l subs ta te . We also 
invest igate in [ M c C a r t y , 1990] an ex tens ion o f the l inear 
p r o o f procedure in [ M c C a r t y , 1988b] w h i c h uses a l i m i t e d 
"d i s j unc t i ve s p l i t t i i i g " o p e r a t i o n whenever i t encounters 
a ru le in the f o r m (6 ) , a n d we show t h a t th i s p r o o f p r o -
cedure is comp le te for i n t u i t i o n i s t i c ( b u t n o t classical) 
log ic . These resul ts are re la ted to recent w o r k on dis-
junctive logic programming [M inke r and Rajasekar , 1990; 
Love land , 1987; L o v e l a n d , 1988]. 

B u t do ru les i n the f o r m (6) a n d (7) rea l ly cap tu re 
our c o m m o n sense reasoning w i t h i nde f in i te i n f o r m a t i o n ? 
Suppose the f o l l o w i n g de f i n i t i on is p a r t o f the 'b locks 
world ' : 

(8) 
(9) 

a n d suppose we have been t o l d t h a t ' A b o v e ( a , b ) ' i s t r ue 
accord ing t o t h i s d e f i n i t i o n . I s there s o m e t h i n g on ' b ' ? 
I n t u i t i v e l y , the answer shou ld be: Yes. B u t i t i s s t anda rd 
p rac t i ce [ K o w a l s k i , 1979] t o w r i t e the ' o n l y i f ' h a l f o f 
d e f i n i t i o n (8 )~(9 ) as fo l l ows : 

Above(x,y) => O n ( x , y) V (10) 

(3z)[Qn(x, z) A A b o v e ( z , y)] 

A n d us ing (10 ) , the f o r m a l answer t o our query is: N o . I t 
i s s t r a i g h t f o r w a r d to ve r i f y t h a t the f i na l K r i p k e mode l 
for rules ( 8 ) - ( 1 0 ) inc ludes a subs ta te t h a t con ta ins an 
i n f i n i t e sequence o f ' A b o v e ' re la t ions , a n d no re l a t i on i n 
the f o r m ' O n ( w , b ) \ For examp le : 

A b o v e ( a , b ) , 

O n ( a , c 1 ) , A b o v e ( c 1 , b ) , 

Moreover , there is no set of f i r s t -o rder rules t h a t gives us 
the i n t u i t i v e l y correct resul t in th is case, since t rans i t i ve 
closure canno t be def ined in f i rs t -o rder log ic [Aho and 
U l l m a n , 1979]. I s there an a l te rna t i ve? 

4 C i r c u m s c r i p t i o n 

In t h i s sect ion, we consider a rad i ca l l y d i f ferent approach 
to the representa t ion o f i nde f in i te i n f o r m a t i o n . Assume 
t h a t there exists a set of definite rules t h a t can be app l ied 
to a w o r l d of definite fac ts . Assume also t h a t someone 
else has observed the w o r l d , app l i ed the ru les, a n d re­
p o r t e d some of these def in i te conc lus ions. O u r j o b is to 
make inferences a b o u t the ac tua l s ta te o f the w o r l d , even 
t h o u g h we have no t observed i t d i rec t l y . For examp le , 
we m i g h t be t o l d t h a t b lock ' a ' i s above b lock ' b \ us ing 
the de f i n i t i on o f ' A b o v e ' i n rules ( 8 ) - ( 9 ) , a n d we m i g h t 
wan t to k n o w whe the r there is some th i ng on 'b ' T h e 
w o r l d cou ld be i n i n f i n i t e l y m a n y d i f ferent states, w i t h 
i n f i n i t e l y m a n y d i f ferent con f igu ra t ions o f ' O n ' fac ts , a l l 
s u p p o r t i n g the conc lus ion ' A b o v e ( a , b ) ' O u r i n f o r m a -
t i o n a b o u t the w o r l d i s thus h i g h l y indefinite. I n t u ­
i t i ve l y , however, we ough t to be able to conc lude t h a t 

is t r u e . 
T h e f o r m a l mach ine r y we need for th i s approach is 

p rov ided by M c C a r t h y ' s t heo ry o f circumscription [Mc­
C a r t h y , 1980; M c C a r t h y , 1986]. Since we are w o r k i n g 
w i t h i n t u i t i o n i s t i c log ic , however , we need to use an in-
tuitionistic vers ion of the c i r c u m s c r i p t i o n a x i o m . Let 
R be a f i n i t e set of embedded i m p l i c a t i o n s , and let P 

be a t u p l e cons is t ing of the "de­
f ined p red ica tes" t h a t appear on the l e f t - hand sides o f 
the ru les in R . Le t R ( P ) denote the c o n j u n c t i o n o f the 
rules in R, w i t h the p red ica te symbo ls in P t r ea ted as 
free paramete rs , a n d let R ( X ) be the same as R ( P ) b u t 
w i t h the p red ica te constants replaced 
by pred ica te var iab les  

D e f i n i t i o n 4 . 1 : T h e circumscription axiom i s the 
f o l l o w i n g sentence in second order i n t u i t i o n i s t i c 
log ic : 2 

We denote th i s expression by C t r c u m ( R ( P ) ; P ) , and 
we refer to i t as " t h e c i r c u m s c r i p t i o n o f P in R ( P ) . " 

T h i s a x i o m has the same i n t u i t i v e m e a n i n g t h a t i t has i n 
classical log ic : I t states t h a t the extensions o f the p red i ­
cates in P are as s m a l l as possib le, g i ven the cons t ra in t 

2 We define second-order in tu i t ion is t ic logic precisely in 
[McCarty , 1990], fo l lowing standard accounts such as [Troel-
stra and van Dalen, 1988]. 
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that R (P) must be true. Since the logic is intuit ionis­
tic, however, the axiom minimizes extensions at every 
substate of every Kr ipke model that satisfies R.3 

If R consists of rules (8) - (9) , then the circumscription 
o f 'Above ' in R forces 'Above' to be the transitive closure 
of ' O n ' [McCarthy, 1980; Lifschitz, 1985], and this entails 
the fol lowing impl icat ion: 

(11) 
We thus have a solution to the problem posed at the 
beginning of this section. 

How might we compute such inferences, in general? 
We discuss this question in [McCarty, 1990], and we 
summarize our results briefly here. Let us formulate the 
general query problem as follows: 

(12) 
where Q and R are embedded implications, and is an 
implicat ion in the form (11) w i th a positive disjunctive 
or existential conclusion and an antecedent consisting of 
a conjunction of atomic formulae. Our approach is to 
construct a final Kripke model for 
under various assumptions about Q and R, and then 
to show that this final Kripke model is generic for the 
query In the present paper, we wi l l only consider the 
case in which R is a set of Horn clauses, but we wi l l 
analyze the general case of embedded implications in a 
forthcoming paper [McCarty, 199l]. For Horn clauses, 
the construction of the final Kripke model is simple, and 
is related to recent results of Kolait is and Papamitr iou 
[1990]. First, let K* be the final Kripke model for R 
itself, as defined in Section 2. Now let B be the set of 
base predicates in R, that is, the predicates that do not 
appear in P, and let b be the Herbrand base constructed 
using B alone. Define: 

where K * ( s ) denotes the set of substates s' in K* such 
that Intui t ively, C* consists of the set of least 
fixpoints of the Horn clauses in ft applied to all possible 
combinations of ground atomic formulae that are con-
structible using the predicates in B. We then have the 
following result: 
T h e o r e m 4.2 : Let R be a set of Horn clauses, and 

let Q be a set of embedded implications. Let C be 
the largest subset of C* that satisfies Q. Then C is 
a final Kripke model for Circum(7t(P);P). 

Since we can also show that final Kripke models are 
generic for queries in the form we can solve the query 
problem (12) by showing that is true in C. 

In the remainder of this paper, we wi l l investigate 
two ways to do this using certain addit ional assump­
tions about the form of Q and R. As an i l lustrat ion of 
our techniques, we w i l l work w i th a single example that 
combines the two examples in Section 3. Let R be the 
following set of rules: 

ChristmasBlock (13) 
3Note that we have written the circumscription axiom as 

a second-order universally-quantified embedded implication. 
Alternative versions, using negation and second-order exis­
tential quantification, which are equivalent in classical logic, 
would not be equivalent intuitionistically. 

(14) 

(15) 

(16) 

(17) 
Intuit ively, rules (13)-(14) define the concept of a 
'ChristmasBlock', and rules (15)-(17) define the concept 
of a stack of 'ChristmasBlocks'. Suppose we are told 
that there exists a stack of 'ChristmasBlocks' in which 
block 'a' is above block 'b' and furthermore that 'a ' 
and ' b ' are painted green and red, respectively. Does it 
follow that there is something green on something red? 
Intuit ively, the answer should be: Yes. Formally, we 
can pose this question by circumscribing the predicates 
'ChristmasBlock,' 'OnCB ' and 'AboveCB' in rules (13)-
(17), adding rule (5) to Q, and then asking whether the 
following implication is entailed: 

(18) 

We wi l l show how to solve this problem in the following 
two sections of the paper, using two different methods. 

5 P r o t o t y p i c a l Proofs 
In this section, we consider a class of inductive proofs in 
which the induction schema takes the form of an intu-
it ionistic embedded impl icat ion. We can think of these 
proofs as having two parts: The first part is a proto­
typical proof, and it is guaranteed to exist whenever the 
query is entailed by Circum(R(P);P). The second 
part involves the proof of an embedded implicat ion wi th 
an embedded second-order universal quantifier, and it is 
conjectured to exist whenever the prototypical proof suc­
ceeds. Al though second-order intuit ionist ic logic is in­
complete, in general, the fragment of second-order logic 
that we use to state the induction schema happens to 
have a complete proof procedure. This means that it 
is possible to automate the search for a solution to our 
sample problem, and to certain other similar problems. 

First, note that rules (13)-(15) in our sample prob­
lem are nonrecursive Horn clauses. For such rules, the 
solution is the same in intuit ionist ic logic as it is in clas­
sical logic [Reiter, 1982; Lifschitz, 1985]. Let Comp(7t) 
denote Clark's Predicate Completion [Clark, 1978]. We 
then have the following result, which is proven in [Mc­
Carty, 1990]: 

T h e o r e m 5 . 1 : Let R be a set of nonrecursive Horn 
clauses. Then Circum(R(P);P) is equivalent to 
Comp(R). 
The remaining rules in our sample problem have a 

simple form, suggesting the fol lowing: 
D e f i n i t i o n 5.2: R is a linear recursive definition of 

the predicate A if it consists of: 
1. A Horn clause w i th ' A ( X ) ' on the left-hand side 

and a conjunction of nonrecursive predicates on 
the right-hand side, and 

2. A Horn clause that is linear recursive in A, 
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'Green(a)' and 'Red(b)' in its data base, and wi th 
'GreenOnRed' as its goal. Our first step is to show, if 
possible, that this proof succeeds using the prototyp­
ical definition in (19). However, the reader can eas­
i ly verify that there exists an SLD-refutat ion proof of 
'GreenOnRed' in this tableau using rules (5) and (19), 
and using Comp(R) applied to rule (15). Moreover, f rom 
an inspection of this proof, it is apparent that there also 
exists a proof of the following universally quantified im­
pl ication: 

(21) 

Let us call this impl icat ion Then 
is the following universally quantified im­

pl ication: 

(22) 

and if we can prove (22) we wi l l also have a proof of 
our original query (18). Therefore, using the induction 
schema in Definit ion 5.3, we t ry to prove  

This goal is an implicat ion w i th a second-order 
universal quantifier, so we create a new tableau, 
we add to the data base, and we t ry to prove 

in T1. 
Let us wri te out each of these schemata in detail, 

is the following impl icat ion: 

(23) 

and is equivalent to the following implicat ion: 

To prove (24), we instantiate x and z to the special con­
stants ' and we add the r ight-hand side of (24) 
to the data base of T1, and we try to prove the left-hand 
side of (24). The remaining details are somewhat te­
dious, but the reader should be able to check that this 
proof does in fact go through. The main point to note is 
that the proof now uses Comp(R) applied to rules (13) 
and (14), which yields a disjunctive assertion. We thus 
need to apply the "disjunctive spl i t t ing" operation dis­
cussed in Section 3. When this f inal step succeeds, how­
ever, the inductive proof itself succeeds, and the query 
is shown to be true. 

The justi f ication for our approach can be found in the 
following two theorems, which are proven in [McCarty, 
1990] using our results on final Kripke models. In the 
statement of these theorems, S(A) denotes the set of 
all induction schemata for A that can be constructed 
using Definit ion 5.3, and V(A) denotes the prototypical 
definit ion of A given by Definit ion 5.2. Both theorems 
apply to the situation in which R is a linear recursive 
definit ion, Q is a set of embedded implications, and is 
an implication w i th a positive disjunctive or existential 
conclusion and an antecedent consisting of a conjunction 
of atomic formulae. 
T h e o r e m 5.4: 
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T h e o r e m 5.5: 

Theorem 5.4 tells us that inductive proofs are sound 
but not necessarily complete, while Theorem 5.5 tells us 
that prototypical proofs are complete but not necessarily 
sound. Together, these theorems sanction the strategy 
we i l lustrated in our example: Try to f ind a prototypical 
proof first, and then use this proof to suggest a suitable 
induction schema. 

Our sample problem is st i l l relatively simple, but we 
have constructed proofs of this sort for more difficult 
problems. In part icular, we have applied our tech-
niques to prove various properties of PROLOG pro-
grams [Kanamori and Fuj i ta, 1986; Elkan and McAllest-
er, 1988]. For example, let 'Append( l ,m,n) ' be defined 
as usual. Let 'Reverse(r,*) ' be defined as follows: 

Reverse(nil, n i l ) 

We can then show that [Reverse(x,y) Re-
ver8e(y,x)]' is entailed by the circumscription of ' A p -
pend' and 'Reverse' in this rulebase. For the details of 
this proof, see [McCarty, 1990]. 

6 A D e c i s i o n P r o c e d u r e 

We have shown in Theorem 5.4 that a certain class of in­
duction schemata provides a sound inference procedure 
for circumscribed definite rules. Furthermore, the struc­
ture of these schemata allows us to use a complete proof 
theory for second-order embedded implications in the in­
ductive step of the proof. This raises the question: Is the 
resulting proof theory for the circumscribed rulebase it-
self complete? We show in this section that it is not. In 
fact there can be no such proof theory, since the query 
problem wi l l be shown to be not even semi-decidable. 
Nevertheless, we wi l l demonstrate that one can st i l l f ind 
interesting classes of decidable queries. Our results are 
significant since they show that, even in cases where the 
circumscription of a theory is not first-order equivalent, 
it is possible to decide certain broad classes of queries. 
We refer the reader to [van der Meyden, 1990] for proofs 
of the results in this section. 

For the remainder of this section we restrict our atten­
t ion to rules R which contain only positive Horn clauses 
wi thout function symbols, i.e., al l programs are DAT-
A L O G programs [Chandra and Harel, 1982]. Further­
more, we require that there be no repeated variables in 
the heads of rules.4 We consider the following restricted 
formulat ion of the query problem: 

(25) 

where D is a set of ground base and defined atoms, and 
is a closed positive existential formula in the base and 

defined predicates, i.e., a formula constructed using only 
the operators and The proof of the following 
result is by an encoding of the containment problem for 
context-free languages: 

4 This last restriction is made to simplify the presentation 
only; our results stil l hold if it is removed. 

T h e o r e m 6 .1 ; For arbi t rary D A T A L O G rules R , 
sets of ground atoms D and positive existential 
queries the problem D Circum(7l(P);P) 
is undecidable. 
We wi l l now show that the complement of the query 

problem is recursively enumerable. Define an expansion 
of a defined atom A(x) by R to be any set E(x) of base 
atoms such that either 

1. E = { B 1 ( x ; b ) , . . . , B n ( x ; b ) } for some tuple b of 
new constants, and for some rule 

in R such that al l the B i are base predicates, or 
2. for 

some tuple b of new constants, and for some rule 

in R such that al l the B i are base predicates, all the 
Aj are defined predicates, and each Ej(x;y) is an 
expansion of Aj(x; y) by R. 

Also, if a is a tuple of constants, then we say that E(a) 
is an expansion of A (a) by R if E(x) is an expansion 
of A(x) by R. We wri te ExpandR(A) for the set of 
expansions of A by R.. If D is a set of ground atoms in 
both base and defined predicates, then an expansion of 
D by R is any set of ground atoms obtained f rom D by 
replacing each defined atom A D by an expansion of 
A by R. 

For example, let R consist of the rules (13)-(17). Then 
the set: 

is an expansion of D = {Green(a), AboveCB(a, b), 
Red(b)}. 

The following proposition shows that we may restrict 
attention to a denumerable set of models of a particular 
form when answering queries: 

Lemma 6.2 shows that the problem of deciding that 
a query is not entailed is semi-decidable, since it suf­
fices to f ind a single expansion of D in which the 
query fails. It follows f rom this and Theorem 6.1 that 

is not a recur­
sively enumerable set. Thus the techniques of Sec­
t ion 5 can only provide sufficient conditions for answer­
ing queries. 

In spite of these undecidabil ity results, there exist 
broad classes of queries for which the query problem can 
be shown to be decidable, even in cases when the circum­
scription of R is not equivalent to a first-order theory. 
Define a query to be basic if it contains occurrences of 
base predicates only. 
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decidable for sets of atoms D and queries contain­
ing the predicate P as well as the base predicates. 
These results are al l consequences of a theorem of 

Courcelle [1990] concerning graph grammars. In gen­
eral, we retain decidability when we permit in the query 
any predicate to which the rulebase gives a definit ion ex­
pressible in monadic second-order logic. Unfortunately, 
it can be shown to be undecidable whether a rulebase 
defines a predicate expressible in monadic second-order 
logic, so we must be content w i th enumerating special 
cases, as above, if we wish to go beyond the class of 
basic queries. 

7 C o n c l u s i o n 

We have presented two approaches to answering queries 
in the presence of indefinite informat ion, both of which 
are able to handle the "stack of Christmas blocks" ex­
ample. The reader may have wondered why, since the 
method of Section 6 is a decision procedure, one would 
bother w i th the prototypical proofs of Section 5? The 
reason is that the the decision procedure works for a 
smaller class of rules than the prototypical proofs. On 
the other hand, the price paid by the prototypical proofs 
for their abi l i ty to deal w i th a potential ly larger set of 
examples is logical incompleteness. It would be interest­
ing to determine the extent to which this incompleteness 
corresponds to the incompleteness of human reasoning 
when faced w i th indefinite information of comparable 
logical complexity. 
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