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Abstract 

The objective of this work is to interpret induc­
tive results obtained by the unsupervised learn­
ing method OSHAM. We briefly introduce the 
learning process of OSHAM, that extracts con­
cept hierarchies from unlabelled data, based on 
a representation combining the classical, proto­
type and exemplar views on concepts. The in­
terpretive process is considered as an intrinsic 
part in OSHAM and is carried out by a com­
bination of case-based reasoning with match­
ing approaches in inductive learning. An ex­
perimental comparative study of some learning 
methods in terms of knowledge description and 
prediction is given. 

1 Introduction 

Though the interpretation of induction results has a sig­
nificant role in machine learning applications, there have 
been little work in inductive learning, particularly in un­
supervised learning, associated with interpretation pro­
cedures, e.g., [Bergadano et a/., 1992], [Wu, 1996]. 

There are three broad classes of logical, threshold, and 
competitive interpreters for intensional concept descrip­
tions [Langley, 1996]. Naturally, three types of outcomes 
occur when matching logically an unknown instance with 
learned concepts: no-match, single-match, and multiple-
match. Most work dealing with the cases of no-match 
and multiple-match employ a probabilistic estimation, 
e.g., [Michalski et a/., 1986]. However, it is not always 
possible to obtain such an estimation in unsupervised 
learning when it requires using the class information. 
Moreover, the logical match of the concept intent does 
not always provide a prediction with enough satisfaction, 
particularly in boundary regions of concepts. 

*This work is supported by Kokusai Electric Co., Ltd 
(Japan) to JAIST (Japan Advanced Institute of Science and 
Technology), and by the National Research Programme on 
Information Technology KC01-RD08 (Vietnam). 

One of two styles of case-based reasoning (CBR) is in­
terpretive by which new situations are evaluated in the 
context of old situations [Kolodner, 1992]. Rather than 
classifying new cases using the intensional concept de­
scriptions, CBR typically does classification by using 
the nearest neighbor methods which have been demon­
strated to be able to work often as well as other induc­
tive learning techniques [Aha et al., 1991]. However, one 
limitation of the CBR is that it does not provide the 
concept description which is the main advantage of in­
ductive learning about the knowledge understandability. 

This paper highlights the intrinsic role of the interpre­
tive process in unsupervised inductive learning and pro­
poses a procedure that combines CBR with matching ap­
proaches in inductive learning to interpret the concepts 
learned by method OSHAM [Ho, 1996], [Ho, 1997]. The 
reason for this combination lies in the fact that the use 
of results in unsupervised learning, obtained by a non-
exhaustive searching for regularities, can be suported by 
the nearest neighbor rule. The paper is organized as 
follows. Section 2 briefly resumes the learning phase 
in OSHAM consisting of an extended representation of 
concepts in the Galois lattice, and the essential ideas of 
the learning algorithm for extracting concept hierarchies 
from unsupervised data. Section 3 presents the inter­
pretation phase of OSHAM to classify unknown cases 
using learned knowledge. Section 4 presents an experi­
mental comparative study of four learning methods and 
the discussion. Section 5 is a short conclusion. 

2 Learning Concept Hierarchies 

2.1 Concept representat ion and ex t rac t i on 

Among views on concepts in cognitive science and ma­
chine learning, the classical, prototype and exemplar 
ones are widely known and used. Main strengths and 
limitations of these views on concepts have been widely 
recognized, e.g., [Van Mechelen et al., 1993], [Wrobel, 
1994J. Moreover, without the class information, unsu­
pervised learning systems often compose solutions by 
employing one or more of three main categorization con-
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straints based on similarity, feature correlation, and syn­
tactical structure of conceptual knowledge. 

Recently, several concept learning systems have been de­
veloped using the classical view on concepts in the Galois 
lattice structure [Wille, 1982]. In [Godin and Missaoui, 
1994], [Carpineto and Romano, 1996], the authors gen­
erate incrementally all possible concepts in the Galois 
lattice. In [Ho, 1995], an alternative approach to hierar­
chical conceptual clustering was proposed that extracts 
a part of the Galois lattice in the form of a concept hi­
erarchy. Although the Galois lattice provides a power­
ful structure for learning concepts, the classical view on 
concepts in this framework has some considerable l imi­
tations, such as it does not capture typicality effects and 
vagueness. Otherwise, to find all possible concepts is 
not always tractable as in the worse case the number of 
concepts can be exponential in the size of datasets, e.g., 
even for the small well-known dataset of Congressional 
voting (435 instances x 17 attributes), the Galois lattice 
has about 150,000 nodes [Carpineto and Romano, 1996], 

As analysed in [Van Mechelen et a/., 1993], each system 
relies on a single view on concepts can be limited in cap­
turing the rich variety of conceptual knowledge. There­
fore, hybrid systems attempt to improve the concept 
learning process by combining fairly different theoreti­
cal views on concept and categorization constraints. In 
[Ho, 1996], the learning method OSHAM was improved 
by an extension of the classical view of concepts in the 
Galois lattice. Instead of characterizing a concept only 
by its intent and extent, OSHAM represents each con­
cept Ck in a concept hierarchy by a 10-tuple 
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The quality of splitting a concept Ck into subconcepts in 
the next level, denoted by is measured by 

(5) 

The basis of learning in OSHAM is a generate-and-test 
procedure to split a concept C into subconcepts at a 
higher level of Starting from the root concept of the 
Galois lattice with the whole set of training instances, 
it extracts the concept hierarchy recursively in a top-
down direction. This algorithm is originally designed for 
discrete attributes wi th unordered nominal values. In 
the current version, continuous attributes are discretized 
before learning process by k-means clustering [Hartigan, 
1975]. In fact, for each continuous attr ibute the k-means 
algorithm is applied to cluster its values into k groups 
(k = 1,2,.. . ,K). A criterion similar to (5) wi th the 
Euclidean distance is used to choose a value of k that 
corresponds to the best partit ion according to this crite­
rion. The basic idea of learning algorithm in OSHAM, 
described fully in [Ho, 1996], is resumed in Table 1. 

2.2 A b o u t l e a r n e d c o n c e p t h i e r a r c h i e s 

By using different constraints for l.(a) in the learning 
algorithm, OSHAM is able to extract both overlapping 
or disjoint concepts depending the user's interest [Ho, 
1997]. OSHAM has been implemented in the X Win­
dow on a Sparcstation with the direct manipulation style 
of interaction which allows the user to participate ac­
tively in the learning process. The user can initialize pa­
rameters to cluster data, visualize the concept hierarchy 
gradually, observe the results and the quality estimation, 
manually modify the parameters when necessary before 
the system continues to go further to cluster subsequent 
data or backtrack to regrow branches of the concept hi­
erarchy wi th respect to the categorization scheme. Fig­
ure 1 shows a main screen of the interactive OSHAM 
with a hierarchy of overlapping concepts learned from 
the Wisconsin breast cancer dataset. A ful l description 
of concept 43 in this figure is given below 

CONCEPT 43 
Level = 5 
Super-Concepts = {29}, Sub-Concepts = {52, 53} 
Features = (Uniformity of Cell Size, 1) (Bare Nuclei, 1) 

(Bland Chromatin, 1) (Uniformity of Cell Shape, 2) 
LocaUnstances/Coverec_instances = 6/25 
LocaLinstances = {8, 127, 221, 236, 415, 661} 
Concept_probabilrty = 0.041666 
LocaUnatance.conditionaLprobability = 0.240000 
Concept_dispersion = 0.258848 
LocaLinstancejdispersion = 0.055556 
Subconcept-part'rtion-quality = 0.519719 

There is a considerable distinction in the concept de­
scription of OSHAM in contrast to those of other meth­

ods such as the supervised learning system C4.5 [Quin­
tan, 1993], the unsupervised learning systems COBWEB 
[Fisher, 1987] and AUTOCLASS [Cheeseman and Stutz, 
1996]. C4.5 induces decision trees in which concepts are 
represented by their intent associated with a predicted 
error rate, and it has not to maintain intermediate con­
cepts. COBWEB represents each concept as a set 
of attributes a, associated with a set of their possible 
values Vij, the occurrence probability, and the condi­
tional probability associated wi th each 
value vij .A classification in AUTOCLASS is defined as 
a set of classes, the probability of each class, and two ad­
ditional probabilities for each hypothesized model: the 
model probability P(H) and the conditional parameter 
probability distribution P(p | H). 

Figure 1: A screen of the interactive OSHAM 

We share the opinion in [Langley, 1996] that the inter­
pretive process is a central issue in learning. An inten-
sional representation has no meaning (e.g., no extension) 
without some associated interpreters and different inter­
preters can yield different meaning for the same repre­
sentation. Next section describes the second phase in 
OSHAM - its interpretive process. 

3 In te rp re t ing concept hierarchies 

3 .1 I n t e r p r e t i v e C B R 

Interpretive case-based learning is a process of evaluat­
ing situations in the context of previous experience. One 
way a case-based classifier works is to ask whether the 
unknown case is enough like another one known. It does 
classification by trying to find the closest matching case 
in its case base to the new case rather than using inten-
sional concept descriptions. Many studies have pointed 
out the strong points of CBR (e.g., simplicity, relatively 
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robust, often excellent performance, etc.) and its weak 
points, e.g., {Aha et al., 1991], [Kolodner, 1992]. 

In inductive learning, the logical interpretation approach 
carries out an "all or none" matching process depend­
ing on whether the unknown instance satisfies the con-
cept intent. The threshold approach carries out a partial 
matching process and employs some threshold to deter-
mine an acceptable degree of match. The competitive 
approach also carries out a partial matching process and 
selects the best competitor based on estimated degrees 
of match [Langley, 1996]. The interpretation of induc­
tive learning results is commonly understood as the pro­
cess of comparing an unknown case to the learned con­
cepts. In OSHAM, as the generality decreases along 
branches of the concept hierarchy, we say that a con­
cept Ck matches the unknown instance e if Ck is the 
most specific concept in a branch that matches e inten­
sionally (though all superconcepts of Ck match e). Nat­
urally, there are three types of outcomes when matching 
logically an unknown instance e wi th the learned con­
cepts: only one concept that matches e (single-match), 
many concepts that match e (multiple-match), and no 
concept that matches e (no-match). We believe in the 
alternative roles of CBR and generalization in inductive 
learning. As noted in [Kolodner, 1992], rules could be 
used when they matched cases exactly, while cases would 
be used when rules were not immediately applicable. In 
fact, the nearest neighbor of e in the training set and the 
learned concept to which it belongs, denoted by NN(e) 
and c[NN(e)], provide useful information which could 
be used in all cases of single-match, multiple-match and 
no-match. 

3 . 2 I n t e r p r e t a t i o n o f i n d u c t i o n r e s u l t s 

We develop an interpretation procedure for concept hi­
erarchies that uses the concept intent, the hierarchical 
structure information, the probabilistic estimations and 
the nearest neighbors of unknown instances. This in­
terpretation procedure consists of two stages: (1) find 
all concepts on the concept hierarchy that match e in-
tensionally, and (2) decide among these concepts which 
matches e best. This procedure shares the same scheme 
of the system POSEIDON [Bergadano et a/., 1992], but 
functions differently. In the second stage, it determines 
the best matched concept of e w i th some satisficing de­
gree of prediction. 

Consider the multiple-match case when we have to de­
cide among the competitors the best matched concept. 
To do it we need to determine and compare the degree 
of match of competitors. From various experiment case-
studies we note that a logically matched concept Ck wil l 
match e well (with low error rate) if it satisfies a ma­
jor i ty of the following conditions: is high, Ck is a 
leaf concept, is high, is low, 
is low, and generally none of these factors has a clearly 
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where are positive weights for the im­
portance of the level, leaf concept, local instance condi­
tional probability, concept dispersion, and local instance 
dispersion (all wi th value 1 by default). 

Denote by c[e] the best matched concept that e is 
finally decided to belong to, and by the satisficing 
degree of prediction. Table 2 presents the interpreta­
t ion procedure in OSHAM based on the function and 
the nearest-neighbor principle. Essentially, this proce­
dure makes final decision by comparing the best concept 
matching c wi th the concept c[NN(e)] containing the 
nearest neighbor NN(e) of e regarding the function 
In this interpretation procedure, different symbolic val­
ues are assigned to the satisficing degree of prediction 

Values of indicate the decreasing rank of predic­
t ion satisfaction. For example, we may consider S1 as 
"best prediction", M1 as "strong prediction" while N1 as 
"weakly accepted prediction" and N2 as "no prediction". 
The interpretation for different values of depends on 
the judgment of the user or domain experts. 

4 E v a l u a t i o n 

4.1 E x p e r i m e n t a l Resul ts 

A way to evaluate unsupervised learning system is to em­
ploy supervised data but hide the class information in the 
whole learning and interpreting phases and use the class 
information only to estimate the predictive accuracy. 
We employ this way to evaluate unsupervised learning 
systems where the predicted name of each learned con­
cept is determined by the most frequently occurring 
name of instances in Wi th this predicted name of 
learned concepts, the error rate of an unsupervised learn­
ing system can be estimated as the ratio of the number of 
testing instances correctly predicted regarding the pre­
dicted name over the total number of testing instances. 
It is worth mentioning that multiple train-and-test ex­
periments are much more computationally expensive but 
give more reliable evaluation than a single train-and-test 
experiment. 

Experiments are carried out on ten datasets from the 
UCI repository of machine learning databases, includ­
ing the Wisconsin breast cancer (breast-w), Congres­
sional voting (vote), Mushroom (mushroom), Tic-tac-
toe (tictactoe), Glass identification (glass), Ionosphere 
(ionosphere), Waveform (waveform), Pima diabetes (di­
abetes), Thyroid (new) disease (thyroid), and Heart dis­
ease Cleveland (heart-c). The numbers of attributes (dis­
crete and continuous), instances and "natural" classes of 
these datasets are given in columns 2-5 of Table 3. Al l 
experiments on these datasets are carried out w i th 10-
fold cross validation by four programs C4.5 [Quinlan, 
1993], CART-like [Breiman et al., 1984], AUTOCLASS 

and OSHAM in the same condition, i.e., the same ran­
domly divided datasets into subsets. For AUTOCLASS, 
we use the public version AUTOCLASS-C implemented 
in C and run three steps of search, report and predict 
wi th the default parameters. The predicted name and 
predictive accuracy of AUTOCLASS and OSHAM are 
obtained as mentioned above. Columns 6-8 report the 
predictive accuracies of C4.5, CART-like and AUTO­
CLASS, respectively. 

For OSHAM we carried out experiments for two in­
terpretation procedures: OSHAM-NN fusing only the 
nearest neighbors) and (using the near­
est neighbors and matching regarding the function by 
the procedure described in Table 2). Experimental re­
sults are reported in columns 9-10, respectively. In order 
to avoid a biased evaluation of OSHAM, although wi th 
each dataset parameters can be adjusted to obtain the 
most suitable concept hierarchy, we fixed values 
of the size of the training set, 
of the number of attributes, and the beam size 
commonly to all datasets. Two last columns in Table 3 
give the average size of concept hierarchies (number of 
concepts) and CPU time (in second) of OSHAM learned 
from these datasets. 

4 . 2 D i s c u s s i o n 

The predicted name obtained in OSHAM and AUTO­
CLASS by the majority of occurring name of instances in 
concepts is different from the concept name obtained in 
supervised learning (e.g., C4.5) using the pruning thresh­
old based on the class information. An unsupervised con­
cept in the worse case may contain nearly equal numbers 
of instances belonging to different natural classes, and an 
unsupervised classification may be failed in distinguish­
ing very similar instances. It explains that while the 
predictive accuracies between these supervised and unsu­
pervised methods look not so different, they are slightly 
different in nature. Note that the recent release 8 of C4.5 
[Quinlan, 1996] treats the continuous attr ibute better 
than the release we used in this work. 

The predictive accuracies of OSHAM and AUTO­
CLASS in these experiments are only slightly different. 
In these first trials, each system is better in several 
datasets and these two systems can be considered having 
comparable performance. One advantage of OSHAM is 
its concept hierarchies can be easily understood by its 
extended classical view on concepts and the graphical 
support. 

Empirical results wi th OSHAM-NN and OSHAM-
illustrate that these strategies are both good for 

interpreting unsupervised induction results. We believe 
that in general CBR can also be used to interpret re­
sults of unsupervised learning and this topic is worth for 
a further investigation. 

262 CASE-BASED REASONING 



5 Conclusion 

In th is paper we f i rs t br ief ly resumed the m a i n ideas 
o f the unsupervised learn ing m e t h o d O S H A M in terms 
of descr ip t ion and ex t rac t ion of concepts. We then de­
scribed how the nearest neighbor rule is combined w i t h 
domain knowledge to in te rp re t the i nduc t i on results. 
Carefu l exper iments w i t h di f ferent datasets have demon­
s t ra ted t h a t this comb ina t ion provides a good solut ion 
to the use of unsupervised learned knowledge in pre­
d i c t i on . The ma in conclusions can be d r a w n f rom th is 
research are (1) t he in te rpre t ive process needs to be a 
par t of a unsupervised learn ing m e t h o d , and (2) the 
C B R can be used to in terpre t results obta ined f rom the 
non-exhaust ive search in unsupervised induc t i ve learn­
ing. O u r near fu tu re research concerns fu r the r invest i ­
gat ions on the effects of k-nearest neighbors and the dis­
cre t iza t ion of cont inuous a t t r i bu tes to the in te rp re ta t ion 
of unsupervised induc t ion resul ts, based on exper iments 
w i t h a larger number of datasets. 
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