
Extracted from:

Agile Web Development with Rails 4

This PDF file contains pages extracted from Agile Web Development with Rails 4,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Agile Web Development with Rails 4

Sam Ruby
Dave Thomas

David Heinemeier Hansson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-56-7
Printed on acid-free paper.
Book version: P1.0—September 2013

http://pragprog.com

One of the interesting features of Rails is that it imposes some fairly serious
constraints on how you structure your web applications. Surprisingly, these
constraints make it easier to create applications—a lot easier. Let’s see why.

3.1 Models, Views, and Controllers

Back in 1979, Trygve Reenskaug came up with a new architecture for devel-
oping interactive applications. In his design, applications were broken into
three types of components: models, views, and controllers.

The model is responsible for maintaining the state of the application. Some-
times this state is transient, lasting for just a couple of interactions with the
user. Sometimes the state is permanent and will be stored outside the appli-
cation, often in a database.

A model is more than just data; it enforces all the business rules that apply
to that data. For example, if a discount shouldn’t be applied to orders of less
than $20, the model will enforce the constraint. This makes sense; by putting
the implementation of these business rules in the model, we make sure that
nothing else in the application can make our data invalid. The model acts as
both a gatekeeper and a data store.

The view is responsible for generating a user interface, normally based on
data in the model. For example, an online store will have a list of products
to be displayed on a catalog screen. This list will be accessible via the model,
but it will be a view that formats the list for the end user. Although the view
may present the user with various ways of inputting data, the view itself
never handles incoming data. The view’s work is done once the data is dis-
played. There may well be many views that access the same model data, often
for different purposes. In the online store, there’ll be a view that displays
product information on a catalog page and another set of views used by
administrators to add and edit products.

Controllers orchestrate the application. Controllers receive events from the
outside world (normally user input), interact with the model, and display an
appropriate view to the user.

This triumvirate—the model, view, and controller—together form an architec-
ture known as MVC. To learn how the three concepts fit together, see the
following figure:

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/rails4
http://forums.pragprog.com/forums/rails4

Database

Controller

View Model

 Browser sends request
 Controller interacts with model
 Controller invokes view
 View renders next browser screen

Figure 5—The Model-View-Controller architecture

The MVC architecture was originally intended for conventional GUI applica-
tions, where developers found the separation of concerns led to far less
coupling, which in turn made the code easier to write and maintain. Each
concept or action was expressed in just one well-known place. Using MVC
was like constructing a skyscraper with the girders already in place—it was
a lot easier to hang the rest of the pieces with a structure already there.
During the development of our application, we will be making heavy use of
Rails’ ability to generate scaffolding for our application.

Ruby on Rails is an MVC framework, too. Rails enforces a structure for your
application—you develop models, views, and controllers as separate chunks
of functionality, and it knits them together as your program executes. One
of the joys of Rails is that this knitting process is based on the use of intelligent
defaults so that you typically don’t need to write any external configuration
metadata to make it all work. This is an example of the Rails philosophy of
favoring convention over configuration.

In a Rails application, an incoming request is first sent to a router, which
works out where in the application the request should be sent and how the
request itself should be parsed. Ultimately, this phase identifies a particular
method (called an action in Rails parlance) somewhere in the controller code.
The action might look at data in the request, it might interact with the model,
and it might cause other actions to be invoked. Eventually the action prepares
information for the view, which renders something to the user.

Rails handles an incoming request as shown in the following figure. In this
example, the application has previously displayed a product catalog page,
and the user has just clicked the Add to Cart button next to one of the products.
This button posts to http://localhost:3000/line_items?product_id=2, where

• 6

• CLICK HERE to purchase this book now. discuss

http://localhost:3000/line_items?product_id=2
http://pragprog.com/titles/rails4
http://forums.pragprog.com/forums/rails4

line_items is a resource in our application and 2 is our internal ID for the
selected product.

Database

 http://my.url/line_items?product_id=2

 Controller interacts with model
 Controller invokes view
 View renders next browser screenLine Items

Controller

Routing

Active
Record
Model

Line Items
View

Figure 6—Rails and MVC

The routing component receives the incoming request and immediately picks
it apart. The request contains a path (/line_items?product_id=2) and a method (this
button does a POST operation; other common methods are GET, PUT, PATCH,
and DELETE). In this simple case, Rails takes the first part of the path,
line_items, as the name of the controller and the product_id as the ID of a product.
By convention, POST methods are associated with create() actions. As a result
of all this analysis, the router knows it has to invoke the create() method in
the controller class LineItemsController (we’ll talk about naming conventions in
Section 18.2, Naming Conventions, on page ?).

The create() method handles user requests. In this case, it finds the current
user’s shopping cart (which is an object managed by the model). It also asks
the model to find the information for product 2. It then tells the shopping
cart to add that product to itself. (See how the model is being used to keep
track of all the business data? The controller tells it what to do, and the
model knows how to do it.)

Now that the cart includes the new product, we can show it to the user. The
controller invokes the view code, but before it does, it arranges things so that
the view has access to the cart object from the model. In Rails, this invocation
is often implicit; again, conventions help link a particular view with a given
action.

That’s all there is to an MVC web application. By following a set of conventions
and partitioning your functionality appropriately, you’ll discover that your

• CLICK HERE to purchase this book now. discuss

Models, Views, and Controllers • 7

http://pragprog.com/titles/rails4
http://forums.pragprog.com/forums/rails4

code becomes easier to work with and your application becomes easier to
extend and maintain. That seems like a good trade.

If MVC is simply a question of partitioning your code a particular way, you
might be wondering why you need a framework such as Ruby on Rails. The
answer is straightforward: Rails handles all of the low-level housekeeping for
you—all those messy details that take so long to handle by yourself—and lets
you concentrate on your application’s core functionality. Let’s see how.

3.2 Rails Model Support

In general, we’ll want our web applications to keep their information in a
relational database. Order-entry systems will store orders, line items, and
customer details in database tables. Even applications that normally use
unstructured text, such as weblogs and news sites, often use databases as
their back-end data store.

Although it might not be immediately apparent from the SQL1 you use to
access them, relational databases are actually designed around mathematical
set theory. Although this is good from a conceptual point of view, it makes it
difficult to combine relational databases with object-oriented (OO) program-
ming languages. Objects are all about data and operations, and databases
are all about sets of values. Operations that are easy to express in relational
terms are sometimes difficult to code in an OO system. The reverse is also
true.

Over time, folks have worked out ways of reconciling the relational and OO
views of their corporate data. Let’s look at the way that Rails chooses to map
relational data onto objects.

Object-Relational Mapping

ORM libraries map database tables to classes. If a database has a table called
orders, our program will have a class named Order. Rows in this table correspond
to objects of the class—a particular order is represented as an object of class Order
. Within that object, attributes are used to get and set the individual columns.
Our Order object has methods to get and set the amount, the sales tax, and so on.

In addition, the Rails classes that wrap our database tables provide a set of
class-level methods that perform table-level operations. For example, we might
need to find the order with a particular ID. This is implemented as a class

1. SQL, referred to by some as Structured Query Language, is the language used to query
and update relational databases.

• 8

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/rails4
http://forums.pragprog.com/forums/rails4

class method

↪ on page ?

method that returns the corresponding Order object. In Ruby code, this might

puts

↪ on page ?

look like this:

order = Order.find(1)
puts "Customer #{order.customer_id}, amount=$#{order.amount}"

iterating

↪ on page ?

Sometimes these class-level methods return collections of objects.

Order.where(name: 'dave').each do |order|
puts order.amount

end

Finally, the objects corresponding to individual rows in a table have methods
that operate on that row. Probably the most widely used is save(), the operation
that saves the row to the database.

Order.where(name: 'dave').each do |order|
order.pay_type = "Purchase order"
order.save

end

So, an ORM layer maps tables to classes, rows to objects, and columns to
attributes of those objects. Class methods are used to perform table-level
operations, and instance methods perform operations on the individual rows.

In a typical ORM library, you supply configuration data to specify the
mappings between entities in the database and entities in the program.
Programmers using these ORM tools often find themselves creating and
maintaining a boatload of XML configuration files.

Active Record

Active Record is the ORM layer supplied with Rails. It closely follows the
standard ORM model: tables map to classes, rows to objects, and columns
to object attributes. It differs from most other ORM libraries in the way it is
configured. By relying on convention and starting with sensible defaults,
Active Record minimizes the amount of configuration that developers perform.

To illustrate this, here’s a program that uses Active Record to wrap our orders
table:

require 'active_record'

class Order < ActiveRecord::Base
end

order = Order.find(1)
order.pay_type = "Purchase order"
order.save

• CLICK HERE to purchase this book now. discuss

Rails Model Support • 9

http://pragprog.com/titles/rails4
http://forums.pragprog.com/forums/rails4

This code uses the new Order class to fetch the order with an id of 1 and mod-
ify the pay_type. (We’ve omitted the code that creates a database connection
for now.) Active Record relieves us of the hassles of dealing with the underlying
database, leaving us free to work on business logic.

But Active Record does more than that. As you’ll see when we develop our
shopping cart application, starting in Chapter 5, The Depot Application, on
page ?, Active Record integrates seamlessly with the rest of the Rails
framework. If a web form sends the application data related to a business
object, Active Record can extract it into our model. Active Record supports
sophisticated validation of model data, and if the form data fails validations,
the Rails views can extract and format errors.

Active Record is the solid model foundation of the Rails MVC architecture.

3.3 Action Pack: The View and Controller

When you think about it, the view and controller parts of MVC are pretty
intimate. The controller supplies data to the view, and the controller receives
events from the pages generated by the views. Because of these interactions,
support for views and controllers in Rails is bundled into a single component,
Action Pack.

Don’t be fooled into thinking that your application’s view code and controller
code will be jumbled up just because Action Pack is a single component. Quite
the contrary; Rails gives you the separation you need to write web applications
with clearly demarcated code for control and presentation logic.

View Support

In Rails, the view is responsible for creating all or part of a response to be
displayed in a browser, to be processed by an application, or to be sent as an
email. At its simplest, a view is a chunk of HTML code that displays some
fixed text. More typically you’ll want to include dynamic content created by
the action method in the controller.

In Rails, dynamic content is generated by templates, which come in three
flavors. The most common templating scheme, called Embedded Ruby (ERB),
embeds snippets of Ruby code within a view document, in many ways similar
to the way it is done in other web frameworks, such as PHP or JSP. Although
this approach is very flexible, some are concerned that it violates the spirit
of MVC. By embedding code in the view, we risk adding logic that should be
in the model or the controller. As with everything, while judicious use in
moderation is healthy, overuse can become a problem. Maintaining a clean

• 10

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/rails4
http://forums.pragprog.com/forums/rails4

separation of concerns is part of the job of the developer. (We look at HTML
templates in Section 24.2, Generating HTML with ERB, on page ?.)

You can also use ERB to construct JavaScript fragments on the server that
are then executed on the browser. This is great for creating dynamic Ajax
interfaces. We talk about these starting in Section 11.2, Iteration F2: Creating
an Ajax-Based Cart, on page ?.

Rails also provides XML Builder to construct XML documents using Ruby
code—the structure of the generated XML will automatically follow the
structure of the code. We discuss xml.builder templates starting in Section 24.1,
Generating XML with Builder, on page ?.

And the Controller!

The Rails controller is the logical center of your application. It coordinates
the interaction between the user, the views, and the model. However, Rails
handles most of this interaction behind the scenes; the code you write con-
centrates on application-level functionality. This makes Rails controller code
remarkably easy to develop and maintain.

The controller is also home to a number of important ancillary services.

• It is responsible for routing external requests to internal actions. It handles
people-friendly URLs extremely well.

• It manages caching, which can give applications orders-of-magnitude
performance boosts.

• It manages helper modules, which extend the capabilities of the view
templates without bulking up their code.

• It manages sessions, giving users the impression of ongoing interaction
with our applications.

We’ve already seen and modified a controller in Section 2.2, Hello, Rails!, on
page ? and will be seeing and modifying a number of controllers in the
development of a sample application, starting with the products controller in
Section 8.1, Iteration C1: Creating the Catalog Listing, on page ?.

There’s a lot to Rails. But before going any further, let’s have a brief refresher
—and for some of you, a brief introduction—to the Ruby language.

• CLICK HERE to purchase this book now. discuss

Action Pack: The View and Controller • 11

http://pragprog.com/titles/rails4
http://forums.pragprog.com/forums/rails4

