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Abstract—With the advent of extremely high dimensional
datasets, dimensionality reduction techniques are becoming
mandatory. Of the many techniques available, feature selec-
tion (FS) is of growing interest for its ability to identify both
relevant features and frequently repeated instances in huge
datasets. We aim to demonstrate that standard FS methods can
be parallelized in big data platforms like Apache Spark so as
to boost both performance and accuracy. We propose a dis-
tributed implementation of a generic FS framework that includes
a broad group of well-known information theory-based methods.
Experimental results for a broad set of real-world datasets show
that our distributed framework is capable of rapidly dealing with
ultrahigh-dimensional datasets as well as those with a huge num-
ber of samples, outperforming the sequential version in all the
cases studied.

Index Terms—Apache spark, big data, feature selection (FS),
filtering methods, high-dimensional.

I. INTRODUCTION

IN THE last few decades, the dimensionality of datasets
used for machine learning (ML) or data mining tasks has

increased significantly, representing an unprecedented chal-
lenge for researchers, given that existing algorithms do not
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always respond in a suitably timely way to extremely high
dimensionality. In fact, analyzing the datasets posted in the
popular libSVM Database [1], it can be observed that max-
imum data dimensionality was about 62 000 in the 1990s,
but increased to some 16 million in the first decade of this
century and has further increased to some 29 million in the
current decade. In this new scenario, existing learning methods
need to be adapted so as to be able to deal with millions of
features.

With the advent of very high-dimensional datasets, identify-
ing relevant features has become paramount. Dimensionality
reduction techniques can be applied to reduce the dimen-
sionality of the original data and even to improve learning
performance [2]–[4]. These dimensionality reduction tech-
niques usually come in two flavors: 1) feature selection (FS)
and 2) feature extraction. Each approach has its own mer-
its. Feature extraction techniques combine original features to
yield a new set of features, whereas FS techniques remove
irrelevant and redundant features. Since FS maintains the orig-
inal features, it is especially useful for applications where the
original features are important for model interpretation and
knowledge extraction [5], [6]. For this reason, this model was
the focus of this paper.

Existing FS methods are not expected to scale well when
dealing with big data due to the fact that efficiency may
significantly deteriorate or that the FS approach may even
become inapplicable [7]. Scalable distributed programming
protocols and frameworks have emerged in the last decade
to manage the problem of big data. The first program-
ming model developed was MapReduce [8] along with its
open-source implementation Apache Hadoop [9], [10]. More
recently, Apache Spark [11], [12] has been presented as a new
distributed framework with a fast, general large-scale data pro-
cessing engine that is popular with ML researchers due to its
suitability for iterative procedures.

Likewise, several libraries for approaching ML tasks in big
data environments have emerged in recent years. The first
such library was Mahout [13], followed up by MLlib [14],
built on the Spark system [12]. Thanks to Spark’s capacity
for in-memory computation that speeds up iterative pro-
cesses, algorithms developed for this kind of platform have
become pervasive in the industry. Although several gold-
standard algorithms for ML tasks have been redesigned
to incorporate a distributed implementation for big data
technologies, this is not yet the case for FS algorithms.
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To date only a simple chi-squared approach1 and a Random
Forest improvement [15] have been proposed to deal with this
problem.

This paper aims to fill the existing gap by demonstrat-
ing that standard FS methods can be designed for big data
platforms that can be usefully applied to big datasets while
boosting both performance and accuracy. We propose a new
distributed design for an FS generic framework based on infor-
mation theory [16] that is implemented using the Apache
Spark paradigm. To make this adaptation feasible, a wide
variety of techniques from the distributed environment have
been used, including information caching, data partitioning
and replication of relevant variables. Note that adapting this
framework to Spark implies a major challenge as it requires
deep restructuring of classic algorithms.

To test the effectiveness of our framework, we applied it to
a complete set of real-world datasets [up to O(107) features
and instances]. The results point to competitive performance
(in terms of generalization and efficiency) when dealing with
datasets that are huge in terms of both number of features and
instances. As an illustrative example, we were able to select
100 features in a dataset with 29× 106 features and 19× 106

instances in under 60 min (using a 432-core cluster).
The remainder of this paper is organized as follows:

Section II provides some background information on FS, big
data, the MapReduce programming model and other frame-
works. Section III describes the distributed framework we
propose for FS in big data. Section IV presents and discusses
the experiments carried out. Finally, Section V concludes this
paper.

II. BACKGROUND

Below we briefly introduce FS, discuss the advent of big
data and its implications and outline the particularities of
MapReduce and the models derived from this framework.

A. Feature Selection

FS is a dimensionality reduction technique that tries to
remove irrelevant and redundant features from original data. Its
goal is to obtain a subset of features that properly describes
a given problem with minimum performance degradation in
order to obtain simpler and more accurate schemes [2].

We can formally define FS as follows: let ei be an instance
ei = (ei1, . . . , ein, eiy), where eir corresponds to the rth fea-
ture value of the ith sample and eiy corresponds to the value
of the output class Y . Let us assume a training set D with m
examples, whose instances ei are formed by a set X of n char-
acteristics or features, and a test set Dt. Sθ ⊆ X is this defined
as a subset of selected features yielded by an FS algorithm.

FS methods can be broadly categorized as follows [17].
1) Wrapper Methods: It uses an evaluation function depen-

dent on a learning algorithm [18]. They are aimed at
optimizing a predictor as part of the learning process.

2) Filtering Methods: It uses other selection techniques
as separability measures or statistical dependences.

1http://spark.apache.org/docs/latest/mllib-feature-extraction.html#
chisqselector

They only consider the general characteristics of the
dataset, as they are independent of any predictor [19].

3) Embedded Methods: It uses a search procedure that is
implicit in the classifier/regressor [20].

Filtering methods usually result in better generalization
due to learning independence. Nevertheless, since they usu-
ally select larger feature subsets, they sometimes require the
application of a threshold. Regarding complexity, filters are
normally less costly than wrappers. When the number of fea-
tures is large (especially the case of big data), filtering methods
need to be used as they are much faster than either of the other
approaches.

B. Big Data: Two-Sided Coin

The Internet continues generating quintillions of bytes of
data; in 2012, for example, 2.5 exabytes of data were created
daily. A solution for the problem of handling large collec-
tions of data is therefore becoming increasingly urgent [21].
Exceptional technologies are now required to efficiently col-
lect, maintain, transmit and process large datasets within
tolerable time intervals. Extracting relevant information from
these collections of data is now one of the most important
and complex challenges facing data analytics research, espe-
cially since many knowledge extraction algorithms have been
rendered obsolete in the face of such vast amounts of data.

Big data, a term coined to describe the exponential growth
and availability of data nowadays, has becomes a problem for
classical data analytics. Gartner [22] referred to big data in
terms of volume, velocity, and variety, that is, the 3Vs, to
which a further 2Vs were subsequently added, namely, verac-
ity and value. Information thus defined requires a radically
new approach to large-scale processing. An under-explored but
no less important topic is big dimensionality in big data [23].
This phenomenon, also known as the “curse of big dimension-
ality,” reflects the explosion of features and the combinatorial
impact of new large incoming datasets with thousands or even
millions of features.

Data scientists have generally focused on only one aspect
of big data, namely, the huge number of instances, while pay-
ing less attention to the features aspect. Big dimensionality,
however, calls for new FS strategies and methods to deal with
the feature explosion problem, reflected in many of the best
known dataset repositories in computational intelligence (like
UCI or libSVM [1], [24]), where the dimensionality of most of
the newly added datasets is huge [23] (e.g., almost 30 million
for the KDD2010 dataset).

An additional problem is the myriad of feature types and
their combinations that are becoming standard in many real-
world scenarios. For instance, multimedia content on the
Internet, which represents about 60% of total traffic [25], is
transmitted in thousands of different formats (audio, video,
images, etc.). Another example is natural language processing,
where multiple feature types such as words, n-gram templates,
etc., are simultaneously used to produce comprehensible and
reliable models [26].

Not all features in a problem, however, contribute equally to
prediction models and results. FS is thus required, now more

http://spark.apache.org/docs/latest/mllib-feature-extraction.html#chisqselector
http://spark.apache.org/docs/latest/mllib-feature-extraction.html#chisqselector
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than ever, to ensure fast and cost-effective learning and predic-
tion. Isolating high-value features from a raw set of potentially
irrelevant, redundant and noisy features, while complying with
measurement and storage requirements, is a key task in big
data research. Although some solutions exist that apply FS
techniques to large-scale data [27], most of these solutions
are applied locally. For high-dimensional data, however, new
distributed solutions are necessary.

C. Distributed Programming Models and Frameworks:
Apache Hadoop and Apache Spark

The MapReduce framework [8] emerged in 2003 as a revo-
lutionary tool for handling big data. It was designed by Google
specifically to generate and process large-scale datasets by
automatically processing data in a highly distributed way using
large clusters of computers. The framework is in charge of
partitioning and managing data, recovering failures, schedul-
ing jobs and communicating, leaving the programmers with
a transparent and scalable tool to easily execute tasks on
distributed systems.2

MapReduce is based on processing in two phases: 1) map-
ping (map) and 2) reducing (reduce). The map function
transforms key-value pairs into sets of intermediate pairs. The
reduce function merges these intermediate pairs with a match-
ing key, with the master node splitting the data into chunks
and distributing them across nodes for independent process-
ing (in a divide-and-conquer fashion). Each node next executes
the Map function on a given input subset and notifies comple-
tion to the master node. The master node then distributes the
matching pairs across the nodes according to a key partition-
ing scheme that combines pairs using the reduce function to
form the final output.

Apache Hadoop [9], [10] is an open-source implemen-
tation of MapReduce for reliable, scalable, and distributed
computing. Despite being a popular open-source implemen-
tation of MapReduce, however, Hadoop is not suitable for
certain applications, including online or iterative computing,
high interprocess communication paradigms, or in-memory
computing [29].

In recent years, Apache Spark has been included in the
Hadoop ecosystem [11], [12] as a powerful framework that
performs faster distributed computing on big data. It does this
by using in-memory primitives that allow it to perform 100
times faster than Hadoop for certain applications. The fact that
this platform allows user programs to load data into memory
and to make repeated queries means that it is particularly well
suited for online and iterative processing (especially for ML
algorithms). Spark is also versatile in allowing several dis-
tributed programming models like Pregel and MapReduce to
be implemented.

Spark is based on a distributed data structure called resilient
distributed datasets (RDDs). RDDs are an immutable, parti-
tioned set of records that can be generated by either stored
data or other RDDs. There are two types of operations for
RDDs: 1) transformation, which creates a new RDD from

2For a exhaustive review of MapReduce and similar programming frame-
works (see [28]).

another RDD and 2) action, which returns a record/value to
the main program after a set of operations is applied. Some
examples of transformations are map (transform all records)
and filter (select records), whereas count (compute the number
of records) and save (write output) are examples of actions.
The main difference between the two operations are when and
how they are applied to data. Transformations, lazily applied,
are annotated until an action triggers execution of pending
operations in a log called lineage, which removes the need
for checkpoints while allowing lost partitions to be easily
recomputed from the log.

Users can also control other distributed features like persis-
tence and data partitioning. For instance, users can cache a
dataset to memory for reuse in further iterations. RDDs can
also be persisted on disk if we consider that re-execution may
be more costly than spilling to disk. Finally, placement of
key-based data can be optimized by choosing between differ-
ent Spark schemes (range or hash) or even using our own
partitioner.

Spark primitives extend MapReduce concepts in such a
way as to offer much more complex operations that ease
code parallelization. For a full description of Spark operations,
see [12]. Here, we outline the most relevant operations for our
algorithm.

1) mapPartitions: Like Map, this operation independently
runs a function on each partition, for each of which an
iterator of tuples is fetched and another of the same type
is generated.

2) groupByKey: This operation (using a shuffle operation)
groups tuples with the same key in a single vector of
values.

3) sortByKey: This operation is a distributed version of
merge-sort.

4) broadcast: This operation, normally used for large per-
manent variables (such as big hash tables), keeps a
read-only copy of a given variable on each node rather
than shipping a copy to each task.

Note that groupByKey and sortByKey imply a complete
redistribution of data across the network. This operation,
known as shuffling, is complex and costly and so should be
avoided if at all possible.

Finally, created as a Spark subproject was a scalable ML
library called MLlib [14], [30], composed of common learn-
ing algorithms and statistical utilities. Its main functionalities
include classification, regression, clustering, collaborative fil-
tering, optimization, and dimensionality reduction (mostly
feature extraction).

III. FEATURE SELECTION FILTERING FOR BIG DATA

An information theory-based framework that includes many
common FS filtering algorithms has been proposed by
Brown et al. [16] that proves that algorithms like min-
imum redundancy-maximum relevance (mRMR) and other
algorithms are special cases of conditional mutual informa-
tion (CMI) when certain specific independence assumptions
are made about both the class and the features (further
details below). Here, we demonstrate that these criteria are
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not only a sound theoretical formulation, but also fit well
with modern big data platforms and allow us to distribute
several FS methods and their complexity across a cluster
of machines.

We now describe how we redesigned this framework
for a distributed paradigm. Our framework contains a
generic implementation of several information theory-based
FS methods—including mRMR, conditional MI maximization,
and joint MI (JMI)—that, furthermore, have been designed
to integrate in the Spark MLlib library. The framework can
also be extended with other criteria provided by the user
as long as it complies with the guidelines proposed by
Brown et al. [16].

Below we first briefly present this framework and explain
its adaptation to the big data environment. We then describe
in detail how the selection process and the underlying infor-
mation theory operations were implemented in a distributed
manner using Spark primitives.

A. Information Theory-Based Filter Methods

Information measures tell us how much information has
been acquired by the receiver when sent a message [31]. In
predictive learning, we associate the message with the output
feature in classification.

A commonly used uncertainty function is MI [32], which
measures the amount of information one random variable con-
tains about another, in other words, it expresses the reduction
in the uncertainty of one random variable due to knowledge
of the other variable

I(A;B) = H(A)− H(A|B)

=
∑

a∈A

∑

b∈B

p(a, b) log
p(a, b)

p(a)p(b)
(1)

where A and B are two random variables with marginal prob-
ability mass functions p(a) and p(b), respectively, p(a, b) is
the joint mass function and H is the entropy.

MI can likewise be conditioned to a third random variable.
Thus, CMI is denoted as

I(A;B|C) = H(A|C)− H(A|B, C)

=
∑

c∈C

p(c)
∑

a∈A

∑

b∈B

p(a, b, c) log
p(a, b, c)

p(a, c)p(b, c)
(2)

where C is a third random variable with marginal probability
mass function p(c) and where p(a, c), p(b, c) and p(a, b, c)
are the joint mass functions.

Filtering methods are based on a quantitative criterion or
index, also known as the relevance index or scoring. This
index measures the usefulness of each feature for a specific
classification problem. Through the relevance of a feature for
the class (self-interaction), we can rank features and select the
most relevant ones. However, features can also be ranked using
a more complex criterion such as whether it is more redundant
than another feature (multi-interaction). For instance, redun-
dant features (variables that carry similar information) can be
discarded using the MI criterion [33]

Jmifs(Xi) = I(Xi;Y)− β
∑

Xj∈S

I
(
Xi;Xj

)

where S ⊆ Sθ is the current set of selected features and β is
a weight factor. Considered is the MI between each candidate
Xi �∈ S and the class. Also introduced is a penalty proportional
to the redundancy, calculated as the MI between the current
set of selected features and each candidate feature.

A wide range of methods have been described in the lit-
erature that are built on these information theory measures.
To homogenize use of all the criteria, Brown et al. [16] pro-
posed a generic expression that allows multiple information
theory criteria to be ensembled in a single FS framework,
based on a greedy optimization process that assesses features
using a simple scoring criterion. Through certain independence
assumptions, many criteria can be transformed as linear com-
binations of the Shannon entropy terms MI and CMI [32].
In some cases, more complex criteria are expressed as non-
linear combinations of these terms (e.g., max or min). For a
detailed description of the transformation processes (see [16]).
The generic formula proposed by Brown et al. [16] is
as follows:

J = I(Xi;Y)− β
∑

Xj∈S

I
(
Xj;Xi

)+ γ
∑

Xj∈S

I
(
Xj;Xi|Y

)
(3)

where γ represents a weight factor for the conditional redun-
dancy component.

The formula can be divided into three components, rep-
resenting the relevance of a feature Xi, the redundancy
between two features Xi and Xj and the conditional redun-
dancy between two features Xi, Xj and the class Y . Through
the aforementioned assumptions, many criteria were rewritten
by Brown et al. [16] to fit the generic formulation in such a
way that all the methods could be implemented using a slight
variation on this formula. For a comprehensive list of adapted
FS methods (see [16]).

B. Feature Selection Filtering Framework for Big Data

We now describe the proposed FS filtering framework
for big data using distributed operations, outlining the main
changes made to adapt the classical approach to the new big
data environment. We also analyze the implications arising
from the distributed implementation of (3) and the complex-
ity arising from parallelization of the core operations of this
expression, namely, MI and CMI.

Beyond implementation in Spark, we redesigned Brown’s
framework [16] by making improvements to the classical
approach while maintaining certain features.

1) Columnar Transformation: The access pattern presented
by most FS methods is feature-wise, in contrast to many
other ML algorithms, which are instance-wise (they
operate on rows). Although this may be considered a
minor issue, it can significantly degrade performance
since the natural way to compute relevance and redun-
dancy in FS methods is normally via columns. This
issue is especially important for distributed frameworks
like Spark, where the data partitioning scheme has a
significant impact on performance.

2) Broadcasting: Once all features values have been
grouped and partitioned into different partitions, data
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Algorithm 1 Main FS Algorithm
Input: D Dataset, an RDD of samples.
Input: ns Number of features to select.
Input: npart Number of partitions to set.
Input: cindex Index of the output feature.
Output: Sθ Index list of selected features

Dc ← columnarTransformation(D, ns, npart)
ni← D.nrows; nf ← D.ncols
REL← computeRelevances(Dc, cindex, ni)
CRIT ← initCriteria(REL)
pbest ← CRIT.max
sfeat← Set(pbest)
while |S| < |Sθ | do

RED← computeRedundancies(Dc, pbest.index)
CRIT ← updateCriteria(CRIT, RED)
pbest ← CRIT.max
sfeat← addTo(pbest, sfeat)

end while
return(sfeat)

shift has to be minimal to avoid superfluous network
and CPU usage. If the MI process is performed locally in
each partition, the overall algorithm will run efficiently
(almost linearly). Data shift is minimized by replicating
the output feature and the last selected feature in each
iteration.

3) Precomputed Data Caching: The first term in the generic
criterion of (3) is relevance, which basically implies cal-
culating MI for all the input features and the output
(relevance). This operation is performed once at the start
of our algorithm, then cached to be reused in subse-
quent evaluations of (3). Likewise, subsequent marginal
and joint proportions derived from these operations are
also kept so as to omit some computations. This also
helps isolate redundancy computation by feature as it
replicates permanent information in all nodes.

4) Greedy Approach: Brown et al. [16] proposed a greedy
search process in which only one feature is selected in
each iteration. This approach transforms the quadratic
complexity of typical FS algorithms into a more man-
ageable complexity determined by the number of fea-
tures to select.

1) Main FS Algorithm: Algorithm 1 is the main FS algo-
rithm, in charge of deciding which feature to select in a
sequential manner. Roughly speaking, it calculates the initial
relevance for all the features, and then iterates to select the
best features according to (3) and the underlying MI and CMI
values.

The first step consists of transforming the data into colum-
nar format. Once the data matrix is transformed, the algorithm
obtains the relevance for each feature in X, initializing the cri-
terion value [partial result according to (3)] and creating an
initial ranking of the features. Relevance values are saved as
part of the previous expression and are reused in subsequent
steps to update the criteria. The most relevant feature, pbest, is
then selected and added to the set sfeat, initially empty. The
iterative phase begins by calculating MI and CMI for pbest,
each candidate Xi and Y . The resulting values update the accu-
mulated redundancies (simple and conditional) of the criteria.

Algorithm 2 Function That Transforms Row-Wise Data Into
a Column-Wise Format (columnarTransformation)
Input: D Dataset, an RDD of samples.
Input: nf Number of features.
Input: npart Number of partitions to set.
Output: Column-wise data (RDD of feature vectors).

1: Dc ←
2: map partitions part ∈ D
3: matrix← new Matrix(nf )(part.length)
4: for j = 0 until part.length do
5: for i = 0 until nf do
6: matrix(i)(j)← part(j)(i)
7: end for
8: end for
9: for k = 0 until nf do

10: EMIT < k, (part.index, matrix(k)) >
11: end for
12: end map
13: return(Dc.sortByKey(npart))

In each iteration, the most relevant candidate features are
selected as the new pbest and are added to sfeat. The loop
ends once ns features (where ns = |Sθ |) have been selected or
when no more features remain to be selected.

2) Distributed Operations (Columnar Transformation and
MI Computation): MI and CMI are undoubtedly the costliest
operations to estimate in information theory-based FS. With
huge datasets, these operations become impossible to calcu-
late sequentially as the number of combinations grows. Below
we describe how these calculations are parallelized as a set
of distributed operations (explained in Section II-C). For all
the algorithms described below, RDD variables are written in
uppercase to distinguish them from ordinary variables.

a) Columnar transformation: As mentioned previously,
the column-wise format is much more manageable for FS fil-
tering methods than the row-wise format. Algorithm 2 explains
this transformation, carried out as the first step in our algo-
rithm. The idea behind this transformation is to transpose the
local data matrix provided by each partition. This operation
maintains the partitioning scheme without incurring in a high
shuffling overhead. Additionally, once data are transformed,
they can be cached and reused in the subsequent loop. The
result of this operation is a new matrix, with one row per
feature, that generates a tuple, where k represents the feature
index, part.index is the index of the partition (henceforth the
block index) and matrix(k) is the local matrix for this feature
block.

In order to benefit from data locality, the algorithm allocates
all instances of the same feature to a specific set of partitions
(if possible, to just one partition). To do that, the new instances
are sorted by key, with the number of partitions limited to
npart. In subsequent phases, the partitions are mapped with
the aim of generating a number of histograms per feature that
count the number of occurrences by combination.

Choosing the right number of partitions is important for the
next steps. If npart is equal to or less than the number of
features, then the number of total histograms per feature will
be two at most; otherwise, the total number of histograms
can be high, since the same feature can be distributed across
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Fig. 1. Columnar transformation scheme. F and I indicate features and
instances, respectively. Each rectangle on the left represents a single register
in the original dataset and each rectangle on the right represents a transposed
feature block in the new columnar format.

Algorithm 3 Compute Mutual Information Between the Set
of Features X and Y (computeRelevances)
Input: Dc RDD of tuples (index, (block, vector)).
Input: yind Index of Y .
Input: ni Number of instances.
Output: MI values for all input features.

1: ycol← Dc.lookup(yind)
2: bycol← broadcast(ycol)
3: counter← broadcast(getMaxByFeature(Dc))
4: H← getHistograms(Dc, yind, bycol, null, null)
5: joint← getProportions(H, ni)
6: marginal← getProportions(aggregateByRow(joint), ni)
7: return(computeMutualInfo(H, yind, null))

many partitions (more than two). We recommend setting this
parameter to, at most, 2× the number of features.

Fig. 1 depicts this process using a small example with eight
instances and four features. This figure shows how the algo-
rithm generates a block for each feature in each partition and
how all blocks are sorted by feature in order to place them in
the same partitions.

b) Computing relevance: Algorithm 3 describes how to
compute relevance (MI) for all the input features and Y [as
expressed in (1)]. The design as an initialization method means
that all variables in this function can be used in the subsequent
algorithms. For example, the number of different values for
each feature is first computed and saved as counter (to limit
the size of histograms).

The main idea behind relevance and redundancy functions is
that calculations for each feature are performed independently.
This is done by distributing only the single variables (pbest and
Y) across the cluster and leveraging for the data locality prop-
erty. The first step consists of collecting all blocks of Y from
the data and putting them in a single vector for broadcasting
(bycol). Histograms for all the candidate features with respect
to Y are then calculated in getHistograms (explained below).
This function is common to both the relevance and redundancy
phases. 3-D histograms are computed between all the nons-
elected features and two secondary variables for redundancy,
and between all the nonselected features and one variable for
relevance.3 Joint and marginal proportions are generated from

3For relevance, the null value is used to represent the lack of the second
variable.

Algorithm 4 Compute CMI and MI Between pbest, the Set of
Candidate Features, and Y (computeRedundancies)
Input: Dc RDD of tuples (index, (block, vector)).
Input: jind Index of pbest.
Output: CMI values for all input features.

1: jcol← Dc.lookup(jind)
2: bjcol← broadcast(jcol)
3: H← getHistograms(Dc, jind, bjcol, yind, bycol)
4: return(computeMutualInfo(H, jind, yind))

Algorithm 5 Function That Computes 3-D Histograms
Between pbest, the Set of Candidate Features, and Y for
CMI; or Between the Set of Candidate Features, and Y for
MI (getHistograms)
Input: Dc RDD of tuples (index, (block, vector)).
Input: jind Index of Y or pbest.
Input: yind Index of feature Y (can be empty).
Input: jcol Values for Y or pbest, a broadcast matrix.
Input: ycol Values for Y , a broadcast matrix (can be empty).
Output: Column-wise dataset (RDD of feature vectors).

1: jsize← counter(jind)
2: ysize← counter(yind)
3: H←
4: map partitions part ∈ partitions
5: for (k, (block, v))← part do
6: isize← counter(k)
7: m← newMatrix(ysize)(isize)(jsize)
8: for e = 0 until v.size do
9: j← jcol(block)(e); y← ycol(block)(e); i← v(e)

10: m(y)(i)(j)+ = 1
11: end for
12: EMIT < k, m >
13: end for
14: end map
15: return(H.reduceByKey(sum))

the resulting histograms using matrix operations, that is, by
aggregating proportions by row (marginal) and by computing
joint for joint proportions (joint). Using this information we
can now obtain the MI value for each candidate feature.

c) Computing redundancy: Simple and conditional
redundancy are computed between pbest, each candidate fea-
ture Xi and Y . Conditional redundancy introduces a third
conditional variable (Y), following the formula I(Xj;Xi|Y) (2).

The operation is repeated until we obtain the number of
features specified as a parameter. Algorithm 4, an extension
of relevance computation (Algorithm 3), depicts this process.
Blocks for pbest are obtained from the RDD and broadcast
to all the nodes. The getHistograms function is called up
with two variables in order to obtain the histograms for
all the candidate features with respect to pbest and Y . Note
that the vector for Y is already available from the redun-
dancy computation phase. Finally, both types of redundancy
are computed using the function that computes MI and CMI
(computeMutualInfo).

d) Histograms creation: Algorithm 5 computes 3-D his-
tograms for the set of candidate features with respect to pbest
and Y and subsequently computes MI and CMI. When no
conditional variable is provided, this yields histograms whose
third dimension is equal to one.
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Fig. 2. Histogram creation scheme. F and I indicate features and instances, respectively. The white rectangles each represent a single feature block in the
columnar format and the black rectangles represent marginal and joint proportions for single variables, broadcast across the cluster.

The first two lines return the dimensions for the pbest and Y
variables using counter (Algorithm 1). A mapping operation
on each partition is launched on the dataset that iterates over
the blocks derived from the columnar transformation. Each
tuple is formed of a key (the index of a candidate feature)
and a value with an index block and the corresponding feature
array [(k, (block, v))]. For each instance, a matrix is initialized
to zero and then incremented by one, according to the value
for each combination of pbest, Xi, and Y . Single features (pbest
and Y) are broadcast in the form of matrices, whose first and
second axes indicate, respectively, the block index and the
partial index of the value in this block. This updating operation
is repeated to the end of the feature vector, after which a new
tuple is emitted with the feature index as the key and the
resulting matrix as the value (<k, m>). The mapping operation
continues with ensuing blocks until the partition is finished.
The final histograms are then aggregated by summation. This
aggregation process will remain simple as long as the number
of histograms per partition is small—which is normally the
case, as a single partition usually contains all the blocks for
the same feature. This is why it is important, as explained
above, to reduce the number of histograms by adjusting the
number of partitions.

Fig. 2 depicts the histogram creation process using a simple
example, showing how the algorithm generates one histogram
for each partition and feature. In this case, the number of
partitions corresponds to the number of features, so only one
histogram is generated per feature.

e) MI and CMI computations: Algorithm 6 details the
process that unifies computation of MI and CMI. The algo-
rithm takes as input the indices of single variables (Y or pbest
for MI, and both for CMI) and all previously computed his-
tograms. Before launch, the algorithm broadcasts the marginal
and joint matrices that correspond to these variables and sends
this information to the nodes, as this information is already
computed and cannot be computed independently from the
previous histograms.

A mapping phase is then launched for each histogram tuple,
consisting of a given feature index as the key and a 3-D matrix
as the value. The algorithm generates the MI and CMI val-
ues for all combinations of histograms and single variables
[see (1) and (2)]. First, however, it is necessary to compute
the marginal proportions for the set of candidate features as
well as the joint proportions between each Xi and Y and

Algorithm 6 Calculate MI and CMI for the Set of Histograms
With Respect to Y or pbest for MI, and Both Variables for
CMI (computeMutualInfo)
Input: H Histograms, an RDD of tuples (index, matrix).
Input: bind Index of feature pbest.
Input: cind Index of feature Y (can be empty).
Output: MI and CMI values.

1: bprob← broadcast(marginal(bind))
2: cprob← broadcast(marginal(cind))
3: bcprob← broadcast(joint(bind))
4: MINFO←
5: map (k, m) ∈ H
6: aprob← computeMarginal(m)
7: abprob← computeJoint(m, bind)
8: acprob← computeJoint(m, cind)
9: for c = 0 until getSize(m) do

10: for b = 0 until getnRows(m(c)) do
11: for a = 0 until getnCols(m(c)) do
12: pc← cprob(c)
13: pabc← (m(c)(a)(b)/ninstances)/pc
14: pac← acprob(c)(a); pbc← bcprob(c)(b)
15: cmi + = conditionalMutualInfo(pabc, pac, pbc, pc)
16: if c == 0 then
17: pa← xprob(a)
18: pab← abprob(a)(b); pb← yprob(b)
19: mi + = mutualInfo(pa, pab, pb)
20: end if
21: end for
22: end for
23: end for
24: EMIT < k, (mi, cmi) >
25: end map
26: return(MINFO)

each Xi and pbest (using the matrix operations described in
Algorithm 3). Once all joint and marginal proportions are cal-
culated, a loop starts over all combinations to compute the
proportion pabc (which comes directly from the histogram)
and the final result for each combination. These results are
then aggregated to obtain the overall MI and CMI values for
each feature.

Fig. 3 depicts the MI process that is launched once all
histograms have been computed. Each partition generates a
histogram for each feature it contains. Histograms for the
same feature are aggregated to obtain a single final his-
togram. Only marginal and joint proportions that cannot be
computed independently from each histogram are broadcast.
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Fig. 3. MI computations. F indicates features and the matrices depict the histograms for each feature. The black rectangles represent broadcast joint and
marginal probabilities.

Algorithm 7 Function That Transforms Row-Wise Data Into
Column-Wise Data (Sparse Version) (sparseColumnar)
Input: D Dataset, an RDD of sparse samples.
Input: npart Number of partitions to set.
Output: Column-wise dataset (feature vectors).

1: Dc ←
2: map reg ∈ D
3: ireg← reg.index
4: for i = 0 until reg.length do
5: EMIT < reg(i).key, (ireg, reg(i).value) >
6: end for
7: end map
8: Dc ← Dc.groupByKey(npart).mapValues(vectorize)

Using the histograms and broadcast variables, MI and CMI
are independently computed per feature.

3) High-Dimensional and Sparse Versions: The above
algorithms work well with tall-and-skinny data, formed of a
small number of features and a large number of instances.
However, complexity grows horizontally for sparse datasets
characterized by a large number of features and a variable
number of instances with an undefined number of nonzero
indexed elements. The algorithms affected by this issue are
columnar transformation (Algorithm 2) and histogram cre-
ation (Algorithm 5). The remaining code remains unchanged
except that the structure of data is reduced to a single vec-
tor [in the form (index, vector)]. Since only one histogram is
generated per feature, the block index is excluded from this
structure.

Algorithm 7 describes a new model of processing that trans-
poses data directly, generating single vectors for each feature.
Sparsity is maintained in sparse vectors while the index of
the original instance is used as the key. The algorithm gen-
erates a tuple for each value, in such a way that the key is
formed of the feature index and the value is formed of the
instance index and the value itself. Tuples are all grouped by
key to create a single sparse vector (formed of sorted key-value
tuples).

As for histogram creation, the partition mapping operation
is now replaced by a mapping operation applied to each previ-
ously generated feature vector. Algorithm 8, which describes
this process, is similar to Algorithm 5, with the caveat that only

Algorithm 8 Function That Computes 3-D Histograms for the
Set of Features Xi With Respect to Features pbest and Y (Sparse
Version) (sparseHistograms)
Input: Dc Dataset, an RDD of tuples (Int, (Int, Vector)).
Input: jind Index of Y or pbest.
Input: yind Index of feature Y (can be empty).
Input: jcol Values for Y or pbest, a broadcast matrix.
Input: ycol Values for Y , a broadcast matrix (can be empty).
Output: Column-wise dataset (RDD of feature vectors).

1: jsize← counter(jind); ysize← counter(yind)
2: jyhist← frequencyMap(jind, yind)
3: zhist← frequencyMap(yind)
4: H←
5: map (k, v) ∈ Dc
6: isize← counter(k)
7: m← newMatrix(ysize)(isize)(jsize)
8: for e = 0 until v.size do
9: j← jcol(e); y← ycol(e)

10: i← v(e)
11: if j <> 0 then
12: jyhist(j)(y) = jyhist(j)(y)− 1
13: end if
14: m(y)(i)(j)+ = 1
15: end for
16: for ((j, y), q)← jyhist do
17: m(y)(0)(j)+ = q
18: end for
19: for (y, q)← yhist do
20: m(y)(0)(0)+ = yhist(y)− sum(mat(y))
21: end for
22: EMIT < k, m >
23: end map
24: return(H)

one histogram is yielded for each feature; hence, no reducing
operation is necessary.

Unlike what happens in the dense version, to avoid visiting
all possible sparse feature combinations, the matrix generation
process is adapted, using, as much as possible, accumulators
to compute combinations formed by zeros. As accumulators,
the algorithm calculates the class histogram for the condi-
tional variable and the joint class histogram for the parametric
variables jind and yind. A loop is first started for those combi-
nations in which the first variable (i) is not equal to zero (the
procedure is the same as in the dense version). If the second



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAMÍREZ-GALLEGO et al.: INFORMATION THEORY-BASED FS FRAMEWORK FOR BIG DATA UNDER APACHE SPARK 9

variable (j) is equal to zero, then the frequency counter (in the
joint histogram) for the combination is reduced by one. If j
is not equal to zero, then the algorithm completes the matrix
with the frequencies in the joint histogram. Finally, when both
variables (j and y) are equal to zero, the matrix is updated with
the remaining occurrences for all classes.4 The outcome is the
feature index and the aforementioned matrix.

4) Algorithm Complexity: As mentioned earlier, the FS
algorithm performs a greedy search which stops once the
condition defined as input is reached. Beyond this point, the
sequential algorithm is influenced by the set of distributed
algorithms/operations as presented above. The distributed
primitives used in these algorithms need to be analyzed to
check the complexity of the full proposal. Note that the first
operation (columnar transformation) is quite time-consuming
as it makes great use of the network and memory when shuf-
fling the data (wide dependency). However, once data have
a known partition, they can be reused in subsequent phases
(leveraging the data locality property). This transformation is
performed once at the start or can even be omitted if data are
already in columnar format. The list of distributed operations
in this algorithm are described as follows.

1) Algorithm 2: This algorithm starts with a mapPartitions
operation that transposes the local matrix contained in
the partition and emits a tuple for each feature (in a
linear distributed order). The total number of tuples is
n multiplied by the number of original partitions. These
tuples are then shuffled across the cluster and each subset
is locally sorted (in a log-linear distributed order).

2) Algorithms 3 and 4: The first operation for both algo-
rithms is to retrieve a single column (feature) using
the lookup primitive (in a linear distributed order). Since
the data are already partitioned, the operation efficiently
only looks at the right partition. This variable is then
broadcast to all the nodes, sending a single feature
(m values) across the network. The following operations
(histograms and MI computations) are described below.

3) Algorithm 5: This algorithm is a simple mapReduce
operation whereby the previously generated tuples are
transformed to local histograms and then reduced to the
final histograms by feature. This mapping operation con-
sists of a linear function (O(m)) that fetches the data
contained in each local matrix.

4) Algorithm 6: This operation starts by broadcasting three
single values (proportion values). For each feature, three
linear operations are launched to compute extra proba-
bilities. The MI values are then computed by fetching
the entire 3-D-histogram (in a cubic linear order). Note
that the complexity of all these operations is bounded by
the cardinality of the features included in the histogram.

IV. EXPERIMENTAL FRAMEWORK AND ANALYSIS

This section describes experiments that evaluate the pro-
posed FS framework applied to a set of real-world problems
that are huge in terms of both features and instances.

4The class vector is always dense.

TABLE I
SUMMARY DESCRIPTION OF FIVE DATASETS, INDICATING THE NUMBER

OF EXAMPLES FOR TRAINING AND TEST SETS (#TRAIN EX., #TEST EX.),
THE TOTAL NUMBER OF ATTRIBUTES (#ATTS.), THE NUMBER CLASSES

(#CL), AND THE SPARSITY CONDITION (SPARSE)

A. Datasets and Methods

We used five classification datasets to measure the quality
and usefulness of our FS framework implementation for Spark.
We classified these datasets into two groups: 1) dense (large
number of samples) and 2) sparse (high-dimensional datasets).
For the sparse datasets, the high-dimension version described
in Section III-B3 was used.

The first dataset ECBDL14, used as a reference dataset at
the international GECCO-2014 conference, consists of 631
features (including both numerical and categorical attributes)
and 32 million instances. In this binary classification problem
the class distribution is imbalanced, with 98% of nega-
tive instances. To this imbalanced problem, we applied the
MapReduce version of the Random OverSampling (ROS)
algorithm [34] (henceforth we will use ECBDL14 to refer to
the ROS version). Another dataset used was dna, consisting
of 50 000 000 instances and 201 discrete features and created
in 2008 for the pascal large scale learning challenge.5 Only
the training set was used for our experiments; since the test
set does not contain the class labels, the training set was used
to generate both subsets (using an 80/20 hold-out data split).
The ROS technique was also applied to this dataset (henceforth
dna) since this problem is also imbalanced between classes.
The remaining datasets (epsilon, url, and kddb) come from
the LibSVM dataset repository [1]. These datasets and their
descriptions can be found in the project’s website.6 Table I
provides summary details of these datasets.

As an FS benchmark method, we used the mRMR algo-
rithm [35] since it is one of the most cited selectors in the
literature. Note that the FS algorithm chosen to test perfor-
mance did not affect the time results yielded by the framework
since all criteria were computed in the same way.

For the comparison study, we used support vector machines
(SVM) [36], and Naive Bayes [37] as the classifiers. For our
experiments, we used the distributed versions of these algo-
rithms implemented in the MLlib library [14]. The parameters
of the classifiers, as recommended in the authors’ specifi-
cations [14], are shown in Table II. For all executions, the
datasets were cached in memory as SVM and our method
used iterative processes. The level of parallelism (number of

5http://largescale.ml.tu-berlin.de/summary/
6http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://largescale.ml.tu-berlin.de/summary/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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TABLE II
PARAMETERS OF THE USED CLASSIFIERS

partitions) was set to 864, twice the total number of cores
available in the cluster.7

A Spark package associated with this paper can be
found in the third-party Spark Repository: http://spark-
packages.org/package/sramirez/spark-infotheoretic-feature-
selection. This software was designed for integration in
the MLlib Library and has an associated JIRA issue to
discuss its integration in this library: https://issues.apache.org/
jira/browse/SPARK-6531.

We used two common evaluation metrics to assess the
quality of the resulting FS schemes: area under the receiver
operating characteristic curve (AUROC, henceforth AUC) to
evaluate classifier accuracy, and training modeling time to
evaluate FS performance.

B. Cluster Configuration

For all the experiments we used a cluster composed of
eighteen computing nodes and one master node. The com-
puting nodes had the following characteristics: two processors
x Intel Xeon CPU E5-2620, 6 cores per processor, 2.00 GHz,
15 MB cache, QDR InfiniBand Network (40 Gb/s), 2 TB
HDD, 64 GB RAM. We used the following configuration
for the software: Hadoop 2.5.0-cdh5.3.1 from Cloudera’s
open-source Apache Hadoop distribution,8 HDFS replication
factor 2, HDFS default block size 128 MB, Apache Spark
and MLlib 1.2.0, 432 cores (24 cores/node), 864 RAM GB
(48 GB/node).

Both the HDFS and Spark master processes (the HDFS
NameNode and the Spark Master) were hosted in the main
node. The NameNode controlled the HDFS and coordinated
the slave machines by means of their respective DataNode dae-
mons. The Spark Master controlled all the executors in each
worker node. Spark used the HDFS file system to load and
save data in the same way as the Hadoop framework.

C. Results Analysis

For the evaluation of the time employed by our implemen-
tation to rank the most relevant features, Table III presents
the results obtained by our algorithm using different ranking
thresholds (number of selected features).

As can be observed, our algorithm yielded competi-
tive results in all cases, irrespective of the number of
iterations (represented by the threshold value). Regarding
the datasets with the highest data volumes, namely, kddb
(ultrahigh-dimensionality) and ECBDL14 (with a huge

7The Spark creators recommend using 2-4 partitions per core:
http://spark.apache.org/docs/latest/programming-guide.html#parallelized
-collections.

8http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/
CDH5-homepage.html

TABLE III
SELECTION TIME BY DATASET AND THRESHOLD (IN SECONDS)

TABLE IV
SELECTION TIMES (SEQUENTIAL VERSUS DISTRIBUTED

APPROACHES, IN SECONDS)

Fig. 4. Selection times (sequential versus distributed approaches).

number of samples), our method was able to rank 100 features
in under 60 min.

We conducted a comparison study between our distributed
version and the sequential version developed by Brown’s labo-
ratory.9 Samples from dna were generated with different ratios
of instances in order to study the scalability of our approach
in comparison with the sequential version.10 The level of par-
allelism was set to 200 in the distributed executions as so to
facilitate comparison between the distributed version with one
core per feature and the sequential version with just a single
core.

Table IV and Fig. 4 show the time results for our distributed
versions compared to the sequential version. In the latter, the
last two values (highlighted in italics) were estimated using
linear interpolation since they could not be computed due to
memory problems. Table IV indicates that our distributed ver-
sion outperformed the sequential approach in all cases. What
was especially remarkable was that the largest dataset achieved
the maximum speedup rate (29.83).

9FEAST toolbox (python version): http://www.cs.man.ac.uk/∼gbrown/
software/.

10The sequential version was executed in one node of our cluster with the
aforementioned characteristics.

http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
https://issues.apache.org/jira/browse/SPARK-6531
https://issues.apache.org/jira/browse/SPARK-6531
http://spark.apache.org/docs/latest/programming-guide.html#parallelized-collections
http://spark.apache.org/docs/latest/programming-guide.html#parallelized-collections
http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-homepage.html
http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-homepage.html
http://www.cs.man.ac.uk/~gbrown/software/
http://www.cs.man.ac.uk/~gbrown/software/
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Fig. 5. Selection time by number of cores in the distributed approach (in s).

Fig. 6. AUC results for NaiveBayes using different thresholds.

Finally, as an additional study of scalability we varied the
number of cores, using ECBDL14 (the largest dense dataset)
as a reference and using the same parameters as in the previ-
ous study. Fig. 5, which depicts how our method performed
depending on the number of cores (10 to 100), reveals loga-
rithmic behavior as the number of cores increased. Note that
for just ten cores not all memory was available.

D. Classification Results Analysis

We also analyzed the usefulness of our FS solution when
applied to large-scale classification. Figs. 6 and 7 show the
accuracy results for SVM and Naive Bayes using different FS
schemes. All the datasets described in Table I were used in this
paper except kddb because those classifiers were not designed
to work with such great dimensionality.

Fig. 7 points to an important improvement when FS was
used for url and epsilon. In contrast, the fact that the impact
for dna and ECBDL14 was negligible can be explained by
their high imbalance ratio or small number of features. Fig. 6
presents similar results, except that the improvement for the url
dataset was much smaller.

Beyond AUC, the time employed to create a classifica-
tion model is quite important in many large-scale problems.
Figs. 8 and 9 show classification times for the training phase
for different datasets and thresholds. The results demonstrate
that the simplicity and performance of the generated models
was improved after applying FS, most especially for SVM,
which requires more time for modeling than Naive Bayes.

Fig. 7. AUC results for SVM using different thresholds.

Fig. 8. NaiveBayes classification times for the training phase using different
thresholds (in s).

Fig. 9. SVM classification times for the training phase using different
thresholds (in s).

The performance results demonstrate that our solution is
capable of selecting features in a competitive time interval
when applied to datasets that are huge- in both number of
instances and features. The results also demonstrate the supe-
riority of our distributed approach to FS over the sequential
approach.

Furthermore, using our selection schemes, the classifiers
yield better results in most cases, and at least similar results in
the other cases. Note that, in all the studied cases, our model
was much simpler and faster despite using a small percentage
of the original set of features.
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V. CONCLUSION

In discussing the problem of processing big data, especially
from the perspective of dimensionality, we have highlighted
the impact of correctly identifying relevant features in datasets
and the corresponding difficulties caused by the combinatorial
effects of incoming data growing in terms of both instances
and features. Despite the growing interest in dimensionality
reduction for big data, few FS methods have been devel-
oped to date that can adequately deal with high-dimensionality
problems.

Adopting an information theory approach, we adapted a
generic FS framework for big data from a proposal by
Brown et al. [16]. The framework contains implementations
of many state-of-the-art FS algorithms, including mRMR
and JMI. The adaptation entailed a radical redesign of
Brown et al.’s framework so as to adapt it to a distributed
paradigm. This paper has also resulted in contributing an FS
module to the emerging Spark and MLlib platforms, which,
to date, included no complex FS algorithm.

Our experimental results demonstrate the usefulness of our
FS solution applied to a broad set of large real-world problems.
Our solution performed well with 2-D of big data (samples and
features) and yielded competitive performance results in deal-
ing with both ultrahigh-dimensionality datasets and datasets
with a huge number of samples. Our distributed approach
consistently outperformed the sequential version, enabling the
resolution of problems that could not be usefully resolved
using the classical approach.

Future research will focus on the following.
1) Designing new information theory-based approaches

for high-speed data streams and also extending these
approaches to the handling of drifts in concepts.

2) Analyzing the impact of approximative selection on
high-dimensional data via faster solutions that do not
incur a high penalty on accuracy.

3) Designing a new fully automatic FS system that selects
the most relevant subset of features from a full set of fea-
tures, thereby eliminating the need to define the number
of features to select in each execution.
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