Background: Luminescent nanobioprobes with cell-targeting specificity are likely to find important applications in bioanalysis, biomedicine, and clinical diagnosis. Quantum dots (QDs) are unique and promising materials for such a purpose because of their fluorescence and large surface area for attaching cell-targeting molecules.
Methods: We produced water-dispersible QDs by coating hydrophobic QDs with small amphiphilic polyethylene glycol (PEG) molecules via hydrophobic interactions. We covalently coupled folate (FA) onto the water-dispersible PEG-coated QDs (PEG-QDs) to produce FA-coupled PEG-QDs (FA-PEG-QDs).
Results: These FA-PEG-QD nanoparticles functioned as fluorescent nanobioprobes that specifically recognized folate receptors (FRs) overexpressed in human nasopharyngeal cells (KB cells) but not in an FR-deficient lung carcinoma cell line (A549 cells). Using confocal fluorescence microscopy, we demonstrated uptake of FA-PEG-QDs by KB cells but no uptake of folate-free PEG-QDs. The specificity of this receptor-mediated internalization was confirmed by comparing the uptake by KB vs A549 cells.
Conclusions: Our results suggest that such cell-targeting fluorescent nanobioprobes are potentially very powerful tools for recognizing target cells and delivering and tracking drugs and other therapeutic materials.